Misplaced Pages

ATAC-seq

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

ATAC-seq ( A ssay for T ransposase- A ccessible C hromatin using seq uencing) is a technique used in molecular biology to assess genome-wide chromatin accessibility . In 2013, the technique was first described as an alternative advanced method for MNase-seq , FAIRE-Seq and DNase-Seq . ATAC-seq is a faster analysis of the epigenome than DNase-seq or MNase-seq.

#990009

117-721: ATAC-seq identifies accessible DNA regions by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome. While naturally occurring transposases have a low level of activity, ATAC-seq employs the mutated hyperactive transposase. In a process called "tagmentation", Tn5 transposase cleaves and tags double-stranded DNA with sequencing adaptors. The tagged DNA fragments are then purified, PCR -amplified, and sequenced using next-generation sequencing . Sequencing reads can then be used to infer regions of increased accessibility as well as to map regions of transcription factor binding sites and nucleosome positions. The number of reads for

234-538: A 10.4 x 30 = 312 base pair molecule will circularize hundreds of times faster than 10.4 x 30.5 ≈ 317 base pair molecule. The bending of short circularized DNA segments is non-uniform. Rather, for circularized DNA segments less than the persistence length, DNA bending is localised to 1-2 kinks that form preferentially in AT-rich segments. If a nick is present, bending will be localised to the nick site. Longer stretches of DNA are entropically elastic under tension. When DNA

351-445: A buffer to recruit or titrate ions or antibiotics. Extracellular DNA acts as a functional extracellular matrix component in the biofilms of several bacterial species. It may act as a recognition factor to regulate the attachment and dispersal of specific cell types in the biofilm; it may contribute to biofilm formation; and it may contribute to the biofilm's physical strength and resistance to biological stress. Cell-free fetal DNA

468-459: A cell makes up its genome ; the human genome has approximately 3 billion base pairs of DNA arranged into 46 chromosomes. The information carried by DNA is held in the sequence of pieces of DNA called genes . Transmission of genetic information in genes is achieved via complementary base pairing. For example, in transcription, when a cell uses the information in a gene, the DNA sequence is copied into

585-553: A cell. Twisting-torsional stiffness is important for the circularisation of DNA and the orientation of DNA bound proteins relative to each other and bending-axial stiffness is important for DNA wrapping and circularisation and protein interactions. Compression-extension is relatively unimportant in the absence of high tension. DNA in solution does not take a rigid structure but is continually changing conformation due to thermal vibration and collisions with water molecules, which makes classical measures of rigidity impossible to apply. Hence,

702-450: A chain by covalent bonds (known as the phosphodiester linkage ) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone . The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups,

819-445: A complementary RNA sequence through the attraction between the DNA and the correct RNA nucleotides. Usually, this RNA copy is then used to make a matching protein sequence in a process called translation , which depends on the same interaction between RNA nucleotides. In an alternative fashion, a cell may copy its genetic information in a process called DNA replication . The details of these functions are covered in other articles; here

936-492: A double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature . As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication. This reversible and specific interaction between complementary base pairs is critical for all the functions of DNA in organisms. Most DNA molecules are actually two polymer strands, bound together in

1053-461: A force, straightening it out. Using optical tweezers , the entropic stretching behavior of DNA has been studied and analyzed from a polymer physics perspective, and it has been found that DNA behaves largely like the Kratky-Porod worm-like chain model under physiologically accessible energy scales. Under sufficient tension and positive torque, DNA is thought to undergo a phase transition with

1170-428: A full set of the mitochondrial genes. Each human mitochondrion contains, on average, approximately 5 such mtDNA molecules. Each human cell contains approximately 100 mitochondria, giving a total number of mtDNA molecules per human cell of approximately 500. However, the amount of mitochondria per cell also varies by cell type, and an egg cell can contain 100,000 mitochondria, corresponding to up to 1,500,000 copies of

1287-439: A helical fashion by noncovalent bonds; this double-stranded (dsDNA) structure is maintained largely by the intrastrand base stacking interactions, which are strongest for G,C stacks. The two strands can come apart—a process known as melting—to form two single-stranded DNA (ssDNA) molecules. Melting occurs at high temperatures, low salt and high pH (low pH also melts DNA, but since DNA is unstable due to acid depurination, low pH

SECTION 10

#1733094516991

1404-571: A higher number is also possible but this would be against the natural principle of least effort . The phosphate groups of DNA give it similar acidic properties to phosphoric acid and it can be considered as a strong acid . It will be fully ionized at a normal cellular pH, releasing protons which leave behind negative charges on the phosphate groups. These negative charges protect DNA from breakdown by hydrolysis by repelling nucleophiles which could hydrolyze it. Pure DNA extracted from cells forms white, stringy clumps. The expression of genes

1521-585: A large quantity of custom, modified Tn5. Recently, a pooled barcode method called sci-CAR was developed, allowing joint profiling of chromatin accessibility and gene expression of single cells. Computational analysis of scATAC-seq is based on construction of a count matrix with number of reads per open chromatin regions. Open chromatin regions can be defined, for example, by standard peak calling of pseudo bulk ATAC-seq data. Further steps include data reduction with PCA and clustering of cells. scATAC-seq matrices can be extremely large (hundreds of thousands of regions) and

1638-667: A long-standing puzzle known as the " C-value enigma ". However, some DNA sequences that do not code protein may still encode functional non-coding RNA molecules, which are involved in the regulation of gene expression . Some noncoding DNA sequences play structural roles in chromosomes. Telomeres and centromeres typically contain few genes but are important for the function and stability of chromosomes. An abundant form of noncoding DNA in humans are pseudogenes , which are copies of genes that have been disabled by mutation. These sequences are usually just molecular fossils , although they can occasionally serve as raw genetic material for

1755-444: A microfluidic device or a liquid deposition system before tagmentation. An alternative technique that does not require single cell isolation is combinatorial cellular indexing. This technique uses barcoding to measure chromatin accessibility in thousands of individual cells; it can generate epigenomic profiles from 10,000-100,000 cells per experiment. But combinatorial cellular indexing requires additional, custom-engineered equipment or

1872-409: A narrower, deeper major groove. The A form occurs under non-physiological conditions in partly dehydrated samples of DNA, while in the cell it may be produced in hybrid pairings of DNA and RNA strands, and in enzyme-DNA complexes. Segments of DNA where the bases have been chemically modified by methylation may undergo a larger change in conformation and adopt the Z form . Here, the strands turn about

1989-412: A preferred direction to bend, i.e., anisotropic bending. This is, again, due to the properties of the bases which make up the DNA sequence - a random sequence will have no preferred bend direction, i.e., isotropic bending. Preferred DNA bend direction is determined by the stability of stacking each base on top of the next. If unstable base stacking steps are always found on one side of the DNA helix then

2106-442: A radius of 10 Å (1.0 nm). According to another study, when measured in a different solution, the DNA chain measured 22–26 Å (2.2–2.6 nm) wide, and one nucleotide unit measured 3.3 Å (0.33 nm) long. The buoyant density of most DNA is 1.7g/cm . DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together. These two long strands coil around each other, in

2223-436: A region correlate with how open that chromatin is, at single nucleotide resolution. ATAC-seq requires no sonication or phenol-chloroform extraction like FAIRE-seq; no antibodies like ChIP-seq ; and no sensitive enzymatic digestion like MNase-seq or DNase-seq. ATAC-seq preparation can be completed in under three hours. ATAC-Seq analysis is used to investigate a number of chromatin-accessibility signatures. The most common use

2340-416: A second protein when read in the opposite direction along the other strand. In bacteria , this overlap may be involved in the regulation of gene transcription, while in viruses, overlapping genes increase the amount of information that can be encoded within the small viral genome. DNA can be twisted like a rope in a process called DNA supercoiling . With DNA in its "relaxed" state, a strand usually circles

2457-443: A section of DNA is somewhat dependent on its sequence, and this can cause significant variation. The variation is largely due to base stacking energies and the residues which extend into the minor and major grooves . At length-scales larger than the persistence length , the entropic flexibility of DNA is remarkably consistent with standard polymer physics models, such as the Kratky-Porod worm-like chain model. Consistent with

SECTION 20

#1733094516991

2574-445: A simple TTAGGG sequence. These guanine-rich sequences may stabilize chromosome ends by forming structures of stacked sets of four-base units, rather than the usual base pairs found in other DNA molecules. Here, four guanine bases, known as a guanine tetrad , form a flat plate. These flat four-base units then stack on top of each other to form a stable G-quadruplex structure. These structures are stabilized by hydrogen bonding between

2691-463: A strand (such as heating). The task of un-knotting topologically linked strands of DNA falls to enzymes termed topoisomerases . These enzymes are dedicated to un-knotting circular DNA by cleaving one or both strands so that another double or single stranded segment can pass through. This un-knotting is required for the replication of circular DNA and various types of recombination in linear DNA which have similar topological constraints. For many years,

2808-483: A succession of base pairs, and in helix-based coordinates is properly termed "inclination". At least three DNA conformations are believed to be found in nature, A-DNA , B-DNA , and Z-DNA . The B form described by James Watson and Francis Crick is believed to predominate in cells. It is 23.7 Å wide and extends 34 Å per 10 bp of sequence. The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in solution. This frequency of twist (termed

2925-488: Is nucleosome mapping experiments, but it can be applied to mapping transcription factor binding sites , adapted to map DNA methylation sites, or combined with sequencing techniques. The utility of high-resolution enhancer mapping ranges from studying the evolutionary divergence of enhancer usage (e.g. between chimps and humans) during development and uncovering a lineage-specific enhancer map used during blood cell differentiation. ATAC-Seq has also been applied to defining

3042-413: Is a polymer composed of two polynucleotide chains that coil around each other to form a double helix . The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses . DNA and ribonucleic acid (RNA) are nucleic acids . Alongside proteins , lipids and complex carbohydrates ( polysaccharides ), nucleic acids are one of

3159-540: Is a fundamental component in determining its tertiary structure . The structure was discovered by Maurice Wilkins , Rosalind Franklin , her student Raymond Gosling , James Watson , and Francis Crick , while the term "double helix" entered popular culture with the 1968 publication of Watson's The Double Helix: A Personal Account of the Discovery of the Structure of DNA . The DNA double helix biopolymer of nucleic acid

3276-575: Is also evidence of protein-DNA complexes forming Z-DNA structures. Other conformations are possible; A-DNA, B-DNA, C-DNA , E-DNA, L -DNA (the enantiomeric form of D -DNA), P-DNA, S-DNA, Z-DNA, etc. have been described so far. In fact, only the letters F, Q, U, V, and Y are now available to describe any new DNA structure that may appear in the future. However, most of these forms have been created synthetically and have not been observed in naturally occurring biological systems. There are also triple-stranded DNA forms and quadruplex forms such as

3393-447: Is called intercalation . Most intercalators are aromatic and planar molecules; examples include ethidium bromide , acridines , daunomycin , and doxorubicin . For an intercalator to fit between base pairs, the bases must separate, distorting the DNA strands by unwinding of the double helix. This inhibits both transcription and DNA replication, causing toxicity and mutations. As a result, DNA intercalators may be carcinogens , and in

3510-435: Is called a polynucleotide . The backbone of the DNA strand is made from alternating phosphate and sugar groups. The sugar in DNA is 2-deoxyribose , which is a pentose (five- carbon ) sugar. The sugars are joined by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings. These are known as the 3′-end (three prime end), and 5′-end (five prime end) carbons,

3627-483: Is denatured, and so the intrinsic bend is lost. All DNA which bends anisotropically has, on average, a longer persistence length and greater axial stiffness. This increased rigidity is required to prevent random bending which would make the molecule act isotropically. DNA circularization depends on both the axial (bending) stiffness and torsional (rotational) stiffness of the molecule. For a DNA molecule to successfully circularize it must be long enough to easily bend into

ATAC-seq - Misplaced Pages Continue

3744-434: Is dependent on ionic strength and the concentration of DNA. As a result, it is both the percentage of GC base pairs and the overall length of a DNA double helix that determines the strength of the association between the two strands of DNA. Long DNA helices with a high GC -content have more strongly interacting strands, while short helices with high AT content have more weakly interacting strands. In biology, parts of

3861-589: Is extremely sparse, i.e. less than 3% of entries are non-zero. Therefore, imputation of count matrix is another crucial step performed by using various methods such as non-negative matrix factorization. As with bulk ATAC-seq, scATAC-seq allows finding regulators like transcription factors controlling gene expression of cells. This can be achieved by looking at the number of reads around TF motifs or footprinting analysis. DNA Deoxyribonucleic acid ( / d iː ˈ ɒ k s ɪ ˌ r aɪ b oʊ nj uː ˌ k l iː ɪ k , - ˌ k l eɪ -/ ; DNA )

3978-427: Is found in the blood of the mother, and can be sequenced to determine a great deal of information about the developing fetus. Nucleic acid double helix In molecular biology , the term double helix refers to the structure formed by double-stranded molecules of nucleic acids such as DNA . The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure , and

4095-462: Is held together by nucleotides which base pair together. In B-DNA , the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. The double helix structure of DNA contains a major groove and minor groove . In B-DNA the major groove is wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to B-DNA do so through

4212-477: Is in solution, it undergoes continuous structural variations due to the energy available in the thermal bath of the solvent. This is due to the thermal vibration of the molecule combined with continual collisions with water molecules. For entropic reasons, more compact relaxed states are thermally accessible than stretched out states, and so DNA molecules are almost universally found in a tangled relaxed layouts. For this reason, one molecule of DNA will stretch under

4329-411: Is influenced by how the DNA is packaged in chromosomes, in a structure called chromatin . Base modifications can be involved in packaging, with regions that have low or no gene expression usually containing high levels of methylation of cytosine bases. DNA packaging and its influence on gene expression can also occur by covalent modifications of the histone protein core around which DNA is wrapped in

4446-432: Is introduced by enzymes called topoisomerases . These enzymes are also needed to relieve the twisting stresses introduced into DNA strands during processes such as transcription and DNA replication . DNA exists in many possible conformations that include A-DNA , B-DNA , and Z-DNA forms, although only B-DNA and Z-DNA have been directly observed in functional organisms. The conformation that DNA adopts depends on

4563-399: Is nonetheless overall preserved (AT-rich). Periodic fracture of the base-pair stack with a break occurring once per three bp (therefore one out of every three bp-bp steps) has been proposed as a regular structure which preserves planarity of the base-stacking and releases the appropriate amount of extension, with the term "Σ-DNA" introduced as a mnemonic, with the three right-facing points of

4680-422: Is nothing special about the four natural nucleobases that evolved on Earth. On the other hand, DNA is tightly related to RNA which does not only act as a transcript of DNA but also performs as molecular machines many tasks in cells. For this purpose it has to fold into a structure. It has been shown that to allow to create all possible structures at least four bases are required for the corresponding RNA , while

4797-432: Is one of four types of nucleobases (or bases ). It is the sequence of these four nucleobases along the backbone that encodes genetic information. RNA strands are created using DNA strands as a template in a process called transcription , where DNA bases are exchanged for their corresponding bases except in the case of thymine (T), for which RNA substitutes uracil (U). Under the genetic code , these RNA strands specify

ATAC-seq - Misplaced Pages Continue

4914-514: Is rarely used). The stability of the dsDNA form depends not only on the GC -content (% G,C basepairs) but also on sequence (since stacking is sequence specific) and also length (longer molecules are more stable). The stability can be measured in various ways; a common way is the melting temperature (also called T m value), which is the temperature at which 50% of the double-strand molecules are converted to single-strand molecules; melting temperature

5031-428: Is recreated by an enzyme called DNA polymerase . This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto the original strand. As DNA polymerases can only extend a DNA strand in a 5′ to 3′ direction, different mechanisms are used to copy the antiparallel strands of the double helix. In this way, the base on the old strand dictates which base appears on

5148-642: Is referred to, respectively, as positively or negatively supercoiled . DNA in vivo is typically negatively supercoiled, which facilitates the unwinding (melting) of the double-helix required for RNA transcription . Within the cell most DNA is topologically restricted. DNA is typically found in closed loops (such as plasmids in prokaryotes) which are topologically closed, or as very long molecules whose diffusion coefficients produce effectively topologically closed domains. Linear sections of DNA are also commonly bound to proteins or physical structures (such as membranes) to form closed topological loops. Francis Crick

5265-411: Is simple, providing the molecules have fewer than about 10,000 base pairs (10 kilobase pairs, or 10 kbp). The intertwining of the DNA strands makes long segments difficult to separate. The cell avoids this problem by allowing its DNA-melting enzymes ( helicases ) to work concurrently with topoisomerases , which can chemically cleave the phosphate backbone of one of the strands so that it can swivel around

5382-404: Is subsequently increased or decreased by supercoiling then the writhe will be appropriately altered, making the molecule undergo plectonemic or toroidal superhelical coiling. When the ends of a piece of double stranded helical DNA are joined so that it forms a circle the strands are topologically knotted . This means the single strands cannot be separated any process that does not involve breaking

5499-516: Is the largest human chromosome with approximately 220 million base pairs , and would be 85 mm long if straightened. In eukaryotes , in addition to nuclear DNA , there is also mitochondrial DNA (mtDNA) which encodes certain proteins used by the mitochondria. The mtDNA is usually relatively small in comparison to the nuclear DNA. For example, the human mitochondrial DNA forms closed circular molecules, each of which contains 16,569 DNA base pairs, with each such molecule normally containing

5616-486: Is to allow the cell to replicate chromosome ends using the enzyme telomerase , as the enzymes that normally replicate DNA cannot copy the extreme 3′ ends of chromosomes. These specialized chromosome caps also help protect the DNA ends, and stop the DNA repair systems in the cell from treating them as damage to be corrected. In human cells , telomeres are usually lengths of single-stranded DNA containing several thousand repeats of

5733-657: The DNA sequence . Mutagens include oxidizing agents , alkylating agents and also high-energy electromagnetic radiation such as ultraviolet light and X-rays . The type of DNA damage produced depends on the type of mutagen. For example, UV light can damage DNA by producing thymine dimers , which are cross-links between pyrimidine bases. On the other hand, oxidants such as free radicals or hydrogen peroxide produce multiple forms of damage, including base modifications, particularly of guanosine, and double-strand breaks. A typical human cell contains about 150,000 bases that have suffered oxidative damage. Of these oxidative lesions,

5850-454: The G-quadruplex and the i-motif . Twin helical strands form the DNA backbone. Another double helix may be found by tracing the spaces, or grooves, between the strands. These voids are adjacent to the base pairs and may provide a binding site . As the strands are not directly opposite each other, the grooves are unequally sized. One groove, the major groove, is 22 Å wide and the other,

5967-406: The amino-acid sequences of proteins is determined by the rules of translation , known collectively as the genetic code . The genetic code consists of three-letter 'words' called codons formed from a sequence of three nucleotides (e.g. ACT, CAG, TTT). In transcription, the codons of a gene are copied into messenger RNA by RNA polymerase . This RNA copy is then decoded by a ribosome that reads

SECTION 50

#1733094516991

6084-469: The cell nucleus as nuclear DNA , and some in the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA . In contrast, prokaryotes ( bacteria and archaea ) store their DNA only in the cytoplasm , in circular chromosomes . Within eukaryotic chromosomes, chromatin proteins, such as histones , compact and organize DNA. These compacting structures guide the interactions between DNA and other proteins, helping control which parts of

6201-407: The nucleosome core particle , and the discovery of topoisomerases . Also, the non-double-helical models are not currently accepted by the mainstream scientific community. DNA is a relatively rigid polymer, typically modelled as a worm-like chain . It has three significant degrees of freedom; bending, twisting, and compression, each of which cause certain limits on what is possible with DNA within

6318-463: The worm-like chain model is the observation that bending DNA is also described by Hooke's law at very small (sub- piconewton ) forces. For DNA segments less than the persistence length, the bending force is approximately constant and behaviour deviates from the worm-like chain predictions. This effect results in unusual ease in circularising small DNA molecules and a higher probability of finding highly bent sections of DNA. DNA molecules often have

6435-594: The 20th century. Crick, Wilkins, and Watson each received one-third of the 1962 Nobel Prize in Physiology or Medicine for their contributions to the discovery. Hybridization is the process of complementary base pairs binding to form a double helix. Melting is the process by which the interactions between the strands of the double helix are broken, separating the two nucleic acid strands. These bonds are weak, easily separated by gentle heating, enzymes , or mechanical force. Melting occurs preferentially at certain points in

6552-419: The 3′ and 5′ carbons along the sugar-phosphate backbone confers directionality (sometimes called polarity) to each DNA strand. In a nucleic acid double helix , the direction of the nucleotides in one strand is opposite to their direction in the other strand: the strands are antiparallel . The asymmetric ends of DNA strands are said to have a directionality of five prime end (5′ ), and three prime end (3′), with

6669-588: The 5′ end having a terminal phosphate group and the 3′ end a terminal hydroxyl group. One major difference between DNA and RNA is the sugar, with the 2-deoxyribose in DNA being replaced by the related pentose sugar ribose in RNA. The DNA double helix is stabilized primarily by two forces: hydrogen bonds between nucleotides and base-stacking interactions among aromatic nucleobases. The four bases found in DNA are adenine ( A ), cytosine ( C ), guanine ( G ) and thymine ( T ). These four bases are attached to

6786-435: The DNA are transcribed. DNA is a long polymer made from repeating units called nucleotides . The structure of DNA is dynamic along its length, being capable of coiling into tight loops and other shapes. In all species it is composed of two helical chains, bound to each other by hydrogen bonds . Both chains are coiled around the same axis, and have the same pitch of 34 ångströms (3.4  nm ). The pair of chains have

6903-453: The DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters , tend to have a high AT content, making the strands easier to pull apart. In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen bonds. When all the base pairs in a DNA double helix melt,

7020-611: The DNA will preferentially bend away from that direction. As bend angle increases then steric hindrances and ability to roll the residues relative to each other also play a role, especially in the minor groove. A and T residues will be preferentially be found in the minor grooves on the inside of bends. This effect is particularly seen in DNA-protein binding where tight DNA bending is induced, such as in nucleosome particles. See base step distortions above. DNA molecules with exceptional bending preference can become intrinsically bent. This

7137-401: The RNA sequence by base-pairing the messenger RNA to transfer RNA , which carries amino acids. Since there are 4 bases in 3-letter combinations, there are 64 possible codons (4  combinations). These encode the twenty standard amino acids , giving most amino acids more than one possible codon. There are also three 'stop' or 'nonsense' codons signifying the end of the coding region; these are

SECTION 60

#1733094516991

7254-542: The Sigma character serving as a reminder of the three grouped base pairs. The Σ form has been shown to have a sequence preference for GNC motifs which are believed under the GNC hypothesis to be of evolutionary importance. The B form of the DNA helix twists 360° per 10.4-10.5 bp in the absence of torsional strain. But many molecular biological processes can induce torsional strain. A DNA segment with excess or insufficient helical twisting

7371-488: The TAG, TAA, and TGA codons, (UAG, UAA, and UGA on the mRNA). Cell division is essential for an organism to grow, but, when a cell divides, it must replicate the DNA in its genome so that the two daughter cells have the same genetic information as their parent. The double-stranded structure of DNA provides a simple mechanism for DNA replication . Here, the two strands are separated and then each strand's complementary DNA sequence

7488-400: The average persistence length has been found to be of around 50 nm (or 150 base pairs). More broadly, it has been observed to be between 45 and 60 nm or 132–176 base pairs (the diameter of DNA is 2 nm) This can vary significantly due to variations in temperature, aqueous solution conditions and DNA length. This makes DNA a moderately stiff molecule. The persistence length of

7605-442: The axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together. If they are twisted in the opposite direction, this is negative supercoiling, and the bases come apart more easily. In nature, most DNA has slight negative supercoiling that

7722-403: The axis of the helix. Together, they characterize the helical structure of the molecule. In regions of DNA or RNA where the normal structure is disrupted, the change in these values can be used to describe such disruption. For each base pair, considered relative to its predecessor, there are the following base pair geometries to consider: Rise and twist determine the handedness and pitch of

7839-498: The bases splaying outwards and the phosphates moving to the middle. This proposed structure for overstretched DNA has been called P-form DNA , in honor of Linus Pauling who originally presented it as a possible structure of DNA. Evidence from mechanical stretching of DNA in the absence of imposed torque points to a transition or transitions leading to further structures which are generally referred to as S-form DNA . These structures have not yet been definitively characterised due to

7956-553: The bending stiffness of DNA is measured by the persistence length, defined as: Bending flexibility of a polymer is conventionally quantified in terms of its persistence length, Lp, a length scale below which the polymer behaves more or less like a rigid rod. Specifically, Lp is defined as length of the polymer segment over which the time-averaged orientation of the polymer becomes uncorrelated... This value may be directly measured using an atomic force microscope to directly image DNA molecules of various lengths. In an aqueous solution,

8073-407: The canonical bases plus uracil. Twin helical strands form the DNA backbone. Another double helix may be found tracing the spaces, or grooves, between the strands. These voids are adjacent to the base pairs and may provide a binding site . As the strands are not symmetrically located with respect to each other, the grooves are unequally sized. The major groove is 22 ångströms (2.2 nm) wide, while

8190-467: The case of thalidomide, a teratogen . Others such as benzo[ a ]pyrene diol epoxide and aflatoxin form DNA adducts that induce errors in replication. Nevertheless, due to their ability to inhibit DNA transcription and replication, other similar toxins are also used in chemotherapy to inhibit rapidly growing cancer cells. DNA usually occurs as linear chromosomes in eukaryotes , and circular chromosomes in prokaryotes . The set of chromosomes in

8307-581: The cell (see below) , but the major and minor grooves are always named to reflect the differences in width that would be seen if the DNA was twisted back into the ordinary B form . In a DNA double helix, each type of nucleobase on one strand bonds with just one type of nucleobase on the other strand. This is called complementary base pairing . Purines form hydrogen bonds to pyrimidines, with adenine bonding only to thymine in two hydrogen bonds, and cytosine bonding only to guanine in three hydrogen bonds. This arrangement of two nucleotides binding together across

8424-619: The chromatin structure or else by remodeling carried out by chromatin remodeling complexes (see Chromatin remodeling ). There is, further, crosstalk between DNA methylation and histone modification, so they can coordinately affect chromatin and gene expression. For one example, cytosine methylation produces 5-methylcytosine , which is important for X-inactivation of chromosomes. The average level of methylation varies between organisms—the worm Caenorhabditis elegans lacks cytosine methylation, while vertebrates have higher levels, with up to 1% of their DNA containing 5-methylcytosine. Despite

8541-476: The conditions found in cells, it is not a well-defined conformation but a family of related DNA conformations that occur at the high hydration levels present in cells. Their corresponding X-ray diffraction and scattering patterns are characteristic of molecular paracrystals with a significant degree of disorder. Compared to B-DNA, the A-DNA form is a wider right-handed spiral, with a shallow, wide minor groove and

8658-432: The conformation of protein secondary structure motifs—and his collaborator Robert Corey had posited, erroneously, that DNA would adopt a triple-stranded conformation . The realization that the structure of DNA is that of a double-helix elucidated the mechanism of base pairing by which genetic information is stored and copied in living organisms and is widely considered one of the most important scientific discoveries of

8775-405: The creation of new genes through the process of gene duplication and divergence . A gene is a sequence of DNA that contains genetic information and can influence the phenotype of an organism. Within a gene, the sequence of bases along a DNA strand defines a messenger RNA sequence, which then defines one or more protein sequences. The relationship between the nucleotide sequences of genes and

8892-449: The cytoplasm called the nucleoid . The genetic information in a genome is held within genes, and the complete set of this information in an organism is called its genotype . A gene is a unit of heredity and is a region of DNA that influences a particular characteristic in an organism. Genes contain an open reading frame that can be transcribed, and regulatory sequences such as promoters and enhancers , which control transcription of

9009-422: The difficulty of carrying out atomic-resolution imaging in solution while under applied force although many computer simulation studies have been made (for example, ). Proposed S-DNA structures include those which preserve base-pair stacking and hydrogen bonding (GC-rich), while releasing extension by tilting, as well as structures in which partial melting of the base-stack takes place, while base-base association

9126-405: The double helix (from six-carbon ring to six-carbon ring) is called a Watson-Crick base pair. DNA with high GC-content is more stable than DNA with low GC -content. A Hoogsteen base pair (hydrogen bonding the 6-carbon ring to the 5-carbon ring) is a rare variation of base-pairing. As hydrogen bonds are not covalent , they can be broken and rejoined relatively easily. The two strands of DNA in

9243-442: The edges of the bases and chelation of a metal ion in the centre of each four-base unit. Other structures can also be formed, with the central set of four bases coming from either a single strand folded around the bases, or several different parallel strands, each contributing one base to the central structure. In addition to these stacked structures, telomeres also form large loop structures called telomere loops, or T-loops. Here,

9360-481: The end of an otherwise complementary double-strand of DNA. However, branched DNA can occur if a third strand of DNA is introduced and contains adjoining regions able to hybridize with the frayed regions of the pre-existing double-strand. Although the simplest example of branched DNA involves only three strands of DNA, complexes involving additional strands and multiple branches are also possible. Branched DNA can be used in nanotechnology to construct geometric shapes, see

9477-418: The focus is on the interactions between DNA and other molecules that mediate the function of the genome. Genomic DNA is tightly and orderly packed in the process called DNA condensation , to fit the small available volumes of the cell. In eukaryotes, DNA is located in the cell nucleus , with small amounts in mitochondria and chloroplasts . In prokaryotes, the DNA is held within an irregularly shaped body in

9594-461: The four major types of macromolecules that are essential for all known forms of life . The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides . Each nucleotide is composed of one of four nitrogen-containing nucleobases ( cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose , and a phosphate group . The nucleotides are joined to one another in

9711-409: The full circle and must have the correct number of bases so the ends are in the correct rotation to allow bonding to occur. The optimum length for circularization of DNA is around 400 base pairs (136 nm) , with an integral number of turns of the DNA helix, i.e., multiples of 10.4 base pairs. Having a non integral number of turns presents a significant energy barrier for circularization, for example

9828-448: The functions of these RNAs are not entirely clear. One proposal is that antisense RNAs are involved in regulating gene expression through RNA-RNA base pairing. A few DNA sequences in prokaryotes and eukaryotes, and more in plasmids and viruses , blur the distinction between sense and antisense strands by having overlapping genes . In these cases, some DNA sequences do double duty, encoding one protein when read along one strand, and

9945-611: The genome-wide chromatin accessibility landscape in human cancers, and revealing an overall decrease in chromatin accessibility in macular degeneration . Computational footprinting methods can be performed on ATAC-seq to find cell specific binding sites and transcription factors with cell specific activity. Modifications to the ATAC-seq protocol have been made to accommodate single-cell analysis . Microfluidics can be used to separate single nuclei and perform ATAC-seq reactions individually. With this approach, single cells are captured by either

10062-425: The helical pitch ) depends largely on stacking forces that each base exerts on its neighbours in the chain. The absolute configuration of the bases determines the direction of the helical curve for a given conformation. A-DNA and Z-DNA differ significantly in their geometry and dimensions to B-DNA, although still form helical structures. It was long thought that the A form only occurs in dehydrated samples of DNA in

10179-448: The helical axis in a left-handed spiral, the opposite of the more common B form. These unusual structures can be recognized by specific Z-DNA binding proteins and may be involved in the regulation of transcription. For many years, exobiologists have proposed the existence of a shadow biosphere , a postulated microbial biosphere of Earth that uses radically different biochemical and molecular processes than currently known life. One of

10296-530: The helix. The other coordinates, by contrast, can be zero. Slide and shift are typically small in B-DNA, but are substantial in A- and Z-DNA. Roll and tilt make successive base pairs less parallel, and are typically small. "Tilt" has often been used differently in the scientific literature, referring to the deviation of the first, inter-strand base-pair axis from perpendicularity to the helix axis. This corresponds to slide between

10413-448: The hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and concentration of metal ions , and the presence of polyamines in solution. The first published reports of A-DNA X-ray diffraction patterns —and also B-DNA—used analyses based on Patterson functions that provided only a limited amount of structural information for oriented fibers of DNA. An alternative analysis

10530-427: The hydrolytic activities of cellular water, etc., also occur frequently. Although most of these damages are repaired, in any cell some DNA damage may remain despite the action of repair processes. These remaining DNA damages accumulate with age in mammalian postmitotic tissues. This accumulation appears to be an important underlying cause of aging. Many mutagens fit into the space between two adjacent base pairs, this

10647-412: The importance of 5-methylcytosine, it can deaminate to leave a thymine base, so methylated cytosines are particularly prone to mutations . Other base modifications include adenine methylation in bacteria, the presence of 5-hydroxymethylcytosine in the brain , and the glycosylation of uracil to produce the "J-base" in kinetoplastids . DNA can be damaged by many sorts of mutagens , which change

10764-402: The laboratory, such as those used in crystallographic experiments, and in hybrid pairings of DNA and RNA strands, but DNA dehydration does occur in vivo , and A-DNA is now known to have biological functions . Segments of DNA that cells have methylated for regulatory purposes may adopt the Z geometry, in which the strands turn about the helical axis the opposite way to A-DNA and B-DNA. There

10881-487: The major and minor grooves are always named to reflect the differences in size that would be seen if the DNA is twisted back into the ordinary B form. Alternative non-helical models were briefly considered in the late 1970s as a potential solution to problems in DNA replication in plasmids and chromatin . However, the models were set aside in favor of the double-helical model due to subsequent experimental advances such as X-ray crystallography of DNA duplexes and later

10998-441: The minor groove is 12 Å (1.2 nm) in width. Due to the larger width of the major groove, the edges of the bases are more accessible in the major groove than in the minor groove. As a result, proteins such as transcription factors that can bind to specific sequences in double-stranded DNA usually make contact with the sides of the bases exposed in the major groove. This situation varies in unusual conformations of DNA within

11115-424: The minor groove, is 12 Å wide. The narrowness of the minor groove means that the edges of the bases are more accessible in the major groove. As a result, proteins like transcription factors that can bind to specific sequences in double-stranded DNA usually make contacts to the sides of the bases exposed in the major groove. This situation varies in unusual conformations of DNA within the cell (see below) , but

11232-516: The mitochondrial genome (constituting up to 90% of the DNA of the cell). A DNA sequence is called a "sense" sequence if it is the same as that of a messenger RNA copy that is translated into protein. The sequence on the opposite strand is called the "antisense" sequence. Both sense and antisense sequences can exist on different parts of the same strand of DNA (i.e. both strands can contain both sense and antisense sequences). In both prokaryotes and eukaryotes, antisense RNA sequences are produced, but

11349-477: The most dangerous are double-strand breaks, as these are difficult to repair and can produce point mutations , insertions , deletions from the DNA sequence, and chromosomal translocations . These mutations can cause cancer . Because of inherent limits in the DNA repair mechanisms, if humans lived long enough, they would all eventually develop cancer. DNA damages that are naturally occurring , due to normal cellular processes that produce reactive oxygen species,

11466-464: The new strand, and the cell ends up with a perfect copy of its DNA. Naked extracellular DNA (eDNA), most of it released by cell death, is nearly ubiquitous in the environment. Its concentration in soil may be as high as 2 μg/L, and its concentration in natural aquatic environments may be as high at 88 μg/L. Various possible functions have been proposed for eDNA: it may be involved in horizontal gene transfer ; it may provide nutrients; and it may act as

11583-440: The nucleic acid. T and A rich regions are more easily melted than C and G rich regions. Some base steps (pairs) are also susceptible to DNA melting, such as T A and T G . These mechanical features are reflected by the use of sequences such as TATA at the start of many genes to assist RNA polymerase in melting the DNA for transcription. Strand separation by gentle heating, as used in polymerase chain reaction (PCR),

11700-454: The open reading frame. In many species , only a small fraction of the total sequence of the genome encodes protein. For example, only about 1.5% of the human genome consists of protein-coding exons , with over 50% of human DNA consisting of non-coding repetitive sequences . The reasons for the presence of so much noncoding DNA in eukaryotic genomes and the extraordinary differences in genome size , or C-value , among species, represent

11817-405: The other. Helicases unwind the strands to facilitate the advance of sequence-reading enzymes such as DNA polymerase . The geometry of a base, or base pair step can be characterized by 6 coordinates: shift, slide, rise, tilt, roll, and twist. These values precisely define the location and orientation in space of every base or base pair in a nucleic acid molecule relative to its predecessor along

11934-428: The place of thymine in RNA and differs from thymine by lacking a methyl group on its ring. In addition to RNA and DNA, many artificial nucleic acid analogues have been created to study the properties of nucleic acids, or for use in biotechnology. Modified bases occur in DNA. The first of these recognized was 5-methylcytosine , which was found in the genome of Mycobacterium tuberculosis in 1925. The reason for

12051-530: The presence of these noncanonical bases in bacterial viruses ( bacteriophages ) is to avoid the restriction enzymes present in bacteria. This enzyme system acts at least in part as a molecular immune system protecting bacteria from infection by viruses. Modifications of the bases cytosine and adenine, the more common and modified DNA bases, play vital roles in the epigenetic control of gene expression in plants and animals. A number of noncanonical bases are known to occur in DNA. Most of these are modifications of

12168-412: The prime symbol being used to distinguish these carbon atoms from those of the base to which the deoxyribose forms a glycosidic bond . Therefore, any DNA strand normally has one end at which there is a phosphate group attached to the 5′ carbon of a ribose (the 5′ phosphoryl) and another end at which there is a free hydroxyl group attached to the 3′ carbon of a ribose (the 3′ hydroxyl). The orientation of

12285-466: The proposals was the existence of lifeforms that use arsenic instead of phosphorus in DNA . A report in 2010 of the possibility in the bacterium GFAJ-1 was announced, though the research was disputed, and evidence suggests the bacterium actively prevents the incorporation of arsenic into the DNA backbone and other biomolecules. At the ends of the linear chromosomes are specialized regions of DNA called telomeres . The main function of these regions

12402-432: The section on uses in technology below. Several artificial nucleobases have been synthesized, and successfully incorporated in the eight-base DNA analogue named Hachimoji DNA . Dubbed S, B, P, and Z, these artificial bases are capable of bonding with each other in a predictable way (S–B and P–Z), maintain the double helix structure of DNA, and be transcribed to RNA. Their existence could be seen as an indication that there

12519-431: The sequence of amino acids within proteins in a process called translation . Within eukaryotic cells, DNA is organized into long structures called chromosomes . Before typical cell division , these chromosomes are duplicated in the process of DNA replication, providing a complete set of chromosomes for each daughter cell. Eukaryotic organisms ( animals , plants , fungi and protists ) store most of their DNA inside

12636-473: The shape of a double helix . The nucleotide contains both a segment of the backbone of the molecule (which holds the chain together) and a nucleobase (which interacts with the other DNA strand in the helix). A nucleobase linked to a sugar is called a nucleoside , and a base linked to a sugar and to one or more phosphate groups is called a nucleotide . A biopolymer comprising multiple linked nucleotides (as in DNA)

12753-552: The single-ringed pyrimidines and the double-ringed purines . In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine. Both strands of double-stranded DNA store the same biological information . This information is replicated when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding , meaning that these sections do not serve as patterns for protein sequences . The two strands of DNA run in opposite directions to each other and are thus antiparallel . Attached to each sugar

12870-498: The single-stranded DNA curls around in a long circle stabilized by telomere-binding proteins. At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands. This triple-stranded structure is called a displacement loop or D-loop . In DNA, fraying occurs when non-complementary regions exist at

12987-518: The strands separate and exist in solution as two entirely independent molecules. These single-stranded DNA molecules have no single common shape, but some conformations are more stable than others. In humans, the total female diploid nuclear genome per cell extends for 6.37 Gigabase pairs (Gbp), is 208.23 cm long and weighs 6.51 picograms (pg). Male values are 6.27 Gbp, 205.00 cm, 6.41 pg. Each DNA polymer can contain hundreds of millions of nucleotides, such as in chromosome 1 . Chromosome 1

13104-469: The sugar-phosphate to form the complete nucleotide, as shown for adenosine monophosphate . Adenine pairs with thymine and guanine pairs with cytosine, forming A-T and G-C base pairs . The nucleobases are classified into two types: the purines , A and G , which are fused five- and six-membered heterocyclic compounds , and the pyrimidines , the six-membered rings C and T . A fifth pyrimidine nucleobase, uracil ( U ), usually takes

13221-614: The wider major groove. The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, (X,Y,Z coordinates in 1954 ) based on the work of Rosalind Franklin and her student Raymond Gosling , who took the crucial X-ray diffraction image of DNA labeled as " Photo 51 ", and Maurice Wilkins , Alexander Stokes , and Herbert Wilson , and base-pairing chemical and biochemical information by Erwin Chargaff . Before this, Linus Pauling —who had already accurately characterised

13338-416: The writhing number of a closed curve. Some simple examples are given, some of which may be relevant to the structure of chromatin. Analysis of DNA topology uses three values: Any change of T in a closed topological domain must be balanced by a change in W, and vice versa. This results in higher order structure of DNA. A circular DNA molecule with a writhe of 0 will be circular. If the twist of this molecule

13455-491: Was first observed in trypanosomatid kinetoplast DNA. Typical sequences which cause this contain stretches of 4-6 T and A residues separated by G and C rich sections which keep the A and T residues in phase with the minor groove on one side of the molecule. For example: The intrinsically bent structure is induced by the 'propeller twist' of base pairs relative to each other allowing unusual bifurcated Hydrogen-bonds between base steps. At higher temperatures this structure

13572-401: Was one of the first to propose the importance of linking numbers when considering DNA supercoils. In a paper published in 1976, Crick outlined the problem as follows: In considering supercoils formed by closed double-stranded molecules of DNA certain mathematical concepts, such as the linking number and the twist, are needed. The meaning of these for a closed ribbon is explained and also that of

13689-517: Was proposed by Wilkins et al. in 1953 for the in vivo B-DNA X-ray diffraction-scattering patterns of highly hydrated DNA fibers in terms of squares of Bessel functions . In the same journal, James Watson and Francis Crick presented their molecular modeling analysis of the DNA X-ray diffraction patterns to suggest that the structure was a double helix. Although the B-DNA form is most common under

#990009