ARTHUR (an acronym for "artillery hunting radar") is a counter-battery radar system originally developed jointly for and in close co-operation with the Norwegian and Swedish armed forces by Ericsson Microwave Systems in both Sweden and Norway. It is also used by the British Army , under the designation TAIPAN .
67-442: It is a mobile, passive electronically scanned array C-band radar for the purpose of enemy field artillery acquisition and was developed for the primary role as the core element of a brigade or division level counter battery sensor system. The vehicle carrying the radar was originally a Bandvagn 206 developed and produced by Hägglund & Söner , but is now more often delivered on trucks with ISO fasteners . The radar
134-426: A central point, or perhaps to a distributed system in which all participate, such that the information can be correlated and a location computed. Modern SIGINT systems, therefore, have substantial communications among intercept platforms. Even if some platforms are clandestine, there is still a broadcast of information telling them where and how to look for signals. A United States targeting system under development in
201-644: A circular probable error of 0.35% of range. MAMBA was successfully used by the British Army in Iraq and Afghanistan, with an availability of 90%. ARTHUR Mod C has a larger antenna and can detect guns at 31 km, mortars at 55 km and rockets at 50–60 km depending on their size, and locate targets at a rate of 100 per minute with CEP 0.2% of range for guns and rockets and 0.1% for mortars. ARTHUR WLR Mod D has several improvements, including an instrumented range of up to 100 km, an accuracy of 0.15% of range, and
268-472: A confirmation, followed by observation of artillery fire, may identify an automated counterbattery fire system. A radio signal that triggers navigational beacons could be a radio landing aid for an airstrip or helicopter pad that is intended to be low-profile. Patterns do emerge. A radio signal with certain characteristics, originating from a fixed headquarters, may strongly suggest that a particular unit will soon move out of its regular base. The contents of
335-458: A different ECCM way to identify frequencies not being jammed or not in use. The earliest, and still common, means of direction finding is to use directional antennas as goniometers , so that a line can be drawn from the receiver through the position of the signal of interest. (See HF/DF .) Knowing the compass bearing, from a single point, to the transmitter does not locate it. Where the bearings from multiple points, using goniometry, are plotted on
402-399: A different direction, simply by electrically adjusting the phase differences between different elements of the passive electronically scanned array (PESA). In 1959, DARPA developed an experimental phased array radar called Electronically Steered Array Radar (ESAR). It was a large two-dimensional phased array with beam steering controlled by computers instead of requiring mechanical motion of
469-433: A lower cost compared to true AESAs. Pulsed radar systems work by connecting an antenna to a powerful radio transmitter to emit a short pulse of signal. The transmitter is then disconnected and the antenna is connected to a sensitive receiver which amplifies any echos from target objects. By measuring the time it takes for the signal to return, the radar receiver can determine the distance to the object. The receiver then sends
536-630: A lower level, German cryptanalysis, direction finding, and traffic analysis were vital to Rommel's early successes in the Western Desert Campaign until British forces tightened their communications discipline and Australian raiders destroyed his principle SIGINT Company. The United States Department of Defense has defined the term "signals intelligence" as: Being a broad field, SIGINT has many sub-disciplines. The two main ones are communications intelligence (COMINT) and electronic intelligence (ELINT). A collection system has to know to look for
603-407: A map, the transmitter will be located at the point where the bearings intersect. This is the simplest case; a target may try to confuse listeners by having multiple transmitters, giving the same signal from different locations, switching on and off in a pattern known to their user but apparently random to the listener. Individual directional antennas have to be manually or automatically turned to find
670-501: A message written in the new ADFGVX cipher , which was cryptanalyzed by Georges Painvin . This gave the Allies advance warning of the German 1918 Spring Offensive . The British in particular, built up great expertise in the newly emerging field of signals intelligence and codebreaking (synonymous with cryptanalysis). On the declaration of war, Britain cut all German undersea cables. This forced
737-648: A particular signal. "System", in this context, has several nuances. Targeting is the process of developing collection requirements : First, atmospheric conditions, sunspots , the target's transmission schedule and antenna characteristics, and other factors create uncertainty that a given signal intercept sensor will be able to "hear" the signal of interest, even with a geographically fixed target and an opponent making no attempt to evade interception. Basic countermeasures against interception include frequent changing of radio frequency , polarization , and other transmission characteristics. An intercept aircraft could not get off
SECTION 10
#1733085931271804-493: A public function "to advise as to the security of codes and cyphers used by all Government departments and to assist in their provision", but also with a secret directive to "study the methods of cypher communications used by foreign powers". GC&CS officially formed on 1 November 1919, and produced its first decrypt on 19 October. By 1940, GC&CS was working on the diplomatic codes and ciphers of 26 countries, tackling over 150 diplomatic cryptosystems. The US Cipher Bureau
871-401: A radar is operating. Once the radar is known to be in the area, the next step is to find its location. If operators know the probable frequencies of transmissions of interest, they may use a set of receivers, preset to the frequencies of interest. These are the frequency (horizontal axis) versus power (vertical axis) produced at the transmitter, before any filtering of signals that do not add to
938-401: A safe distance from the user of the transmitter. When locations are known, usage patterns may emerge, from which inferences may be drawn. Traffic analysis is the discipline of drawing patterns from information flow among a set of senders and receivers, whether those senders and receivers are designated by location determined through direction finding , by addressee and sender identifications in
1005-404: A sensor is unique. MASINT then becomes more informative, as individual transmitters and antennas may have unique side lobes, unintentional radiation, pulse timing, etc. Network build-up , or analysis of emitters (communication transmitters) in a target region over a sufficient period of time, enables creation of the communications flows of a battlefield. COMINT ( com munications int elligence)
1072-470: A separate transmitter and/or receiver unit for each antenna element, all controlled by a computer; AESA is a more advanced, sophisticated versatile second-generation version of the original PESA phased array technology. Hybrids of the two can also be found, consisting of subarrays that individually resemble PESAs, where each subarray has its own RF front end . Using a hybrid approach, the benefits of AESAs (e.g., multiple independent beams) can be realized at
1139-492: A stand-alone, medium-range weapons locating radar or a long-range weapon locating system, consisting of two to four radars working in coordination. This flexibility enables the system to maintain a constant surveillance of an area of interest. The upgraded ARTHUR Mod B met the British Army 's MAMBA requirement for locating guns, mortars or rockets. It can locate guns at 20–25 km and 120 mm mortars at 35–40 km with
1206-426: A tactical SIGINT requirement, whereas the larger aircraft tend to be assigned strategic/national missions. Before the detailed process of targeting begins, someone has to decide there is a value in collecting information about something. While it would be possible to direct signals intelligence collection at a major sports event, the systems would capture a great deal of noise, news signals, and perhaps announcements in
1273-475: A tank battalion or tank-heavy task force. Another set of transmitters might identify the logistic net for that same unit. An inventory of ELINT sources might identify the medium - and long-range counter-artillery radars in a given area. Signals intelligence units will identify changes in the EOB, which might indicate enemy unit movement, changes in command relationships, and increases or decreases in capability. Using
1340-411: A vehicle. If these are regular reports over a period of time, they might reveal a patrol pattern. Direction-finding and radio frequency MASINT could help confirm that the traffic is not deception. The EOB buildup process is divided as following: Separation of the intercepted spectrum and the signals intercepted from each sensor must take place in an extremely small period of time, in order to separate
1407-572: Is Amplitude comparison . An alternative to tunable directional antennas or large omnidirectional arrays such as the Wullenweber is to measure the time of arrival of the signal at multiple points, using GPS or a similar method to have precise time synchronization. Receivers can be on ground stations, ships, aircraft, or satellites, giving great flexibility. A more accurate approach is Interferometer. Modern anti-radiation missiles can home in on and attack transmitters; military antennas are rarely
SECTION 20
#17330859312711474-417: Is a sub-category of signals intelligence that engages in dealing with messages or voice information derived from the interception of foreign communications. COMINT is commonly referred to as SIGINT, which can cause confusion when talking about the broader intelligence disciplines. The US Joint Chiefs of Staff defines it as "Technical information and intelligence derived from foreign communications by other than
1541-415: Is acquired by a given country. Knowledge of physics and electronic engineering further narrows the problem of what types of equipment might be in use. An intelligence aircraft flying well outside the borders of another country will listen for long-range search radars, not short-range fire control radars that would be used by a mobile air defense. Soldiers scouting the front lines of another army know that
1608-569: Is an antenna in which the beam of radio waves can be electronically steered to point in different directions (that is, a phased array antenna), in which all the antenna elements are connected to a single transmitter (such as a magnetron , a klystron or a travelling wave tube ) and/or receiver . The largest use of phased arrays is in radars . Most phased array radars in the world are PESA . The civilian microwave landing system uses PESA transmit-only arrays. A PESA contrasts with an active electronically scanned array (AESA) antenna, which has
1675-539: Is in the general area of the signal. The owner of the transmitter can assume someone is listening, so might set up tank radios in an area where he wants the other side to believe he has actual tanks. As part of Operation Quicksilver , part of the deception plan for the invasion of Europe at the Battle of Normandy , radio transmissions simulated the headquarters and subordinate units of the fictitious First United States Army Group (FUSAG), commanded by George S. Patton , to make
1742-528: Is now developed by Saab AB Electronic Defense Systems (after EMW was sold to Saab in June 2006) and Saab Technologies Norway AS. The ARTHUR detects hostile artillery by tracking projectiles in flight. The original ARTHUR Mod A can locate guns at 15–20 km and 120 mm mortars at 30–35 km with a circular error probable of 0.45% of range. This is accurate enough for effective counter-battery fire by friendly artillery batteries . ARTHUR can operate as
1809-433: Is the act and field of intelligence-gathering by interception of signals , whether communications between people ( communications intelligence —abbreviated to COMINT ) or from electronic signals not directly used in communication ( electronic intelligence —abbreviated to ELINT ). As classified and sensitive information is usually encrypted , signals intelligence may necessarily involve cryptanalysis (to decipher
1876-574: The North Sea . The battle of Dogger Bank was won in no small part due to the intercepts that allowed the Navy to position its ships in the right place. It played a vital role in subsequent naval clashes, including at the Battle of Jutland as the British fleet was sent out to intercept them. The direction-finding capability allowed for the tracking and location of German ships, submarines, and Zeppelins . The system
1943-525: The post office and Marconi stations, grew rapidly to the point where the British could intercept almost all official German messages. The German fleet was in the habit each day of wirelessing the exact position of each ship and giving regular position reports when at sea. It was possible to build up a precise picture of the normal operation of the High Seas Fleet , to infer from the routes they chose where defensive minefields had been placed and where it
2010-516: The ARTHUR in Nordic Battle Groups will primarily concentrate on preventing the use of artillery barrages in civilian areas, since the radar can identify an artillery unit guilty of targeting civilians. It will also be used to warn friendly mission troops of incoming indirect fire . ARTHUR can be operated in two main modes: weapon locating and fire direction. Weapon locating is used to determine
2077-536: The British forces in World War II came under the code name " Ultra ", managed from Government Code and Cypher School at Bletchley Park . Properly used, the German Enigma and Lorenz ciphers should have been virtually unbreakable, but flaws in German cryptographic procedures, and poor discipline among the personnel carrying them out, created vulnerabilities which made Bletchley's attacks feasible. Bletchley's work
ARTHUR - Misplaced Pages Continue
2144-590: The British were the only people transmitting at the time, the British did not need special interpretation of the signals that they were. The birth of signals intelligence in a modern sense dates from the Russo-Japanese War of 1904–1905. As the Russian fleet prepared for conflict with Japan in 1904, the British ship HMS Diana stationed in the Suez Canal intercepted Russian naval wireless signals being sent out for
2211-544: The COMINT gathering method enables the intelligence officer to produce an electronic order of battle by traffic analysis and content analysis among several enemy units. For example, if the following messages were intercepted: This sequence shows that there are two units in the battlefield, unit 1 is mobile, while unit 2 is in a higher hierarchical level, perhaps a command post. One can also understand that unit 1 moved from one point to another which are distant from each 20 minutes with
2278-438: The German defense think that the main invasion was to come at another location. In like manner, fake radio transmissions from Japanese aircraft carriers, before the Battle of Pearl Harbor , were made from Japanese local waters, while the attacking ships moved under strict radio silence. Traffic analysis need not focus on human communications. For example, a sequence of a radar signal, followed by an exchange of targeting data and
2345-505: The Germans to communicate exclusively via either (A) a telegraph line that connected through the British network and thus could be tapped; or (B) through radio which the British could then intercept. Rear Admiral Henry Oliver appointed Sir Alfred Ewing to establish an interception and decryption service at the Admiralty ; Room 40 . An interception service known as 'Y' service , together with
2412-477: The ability to cover an arc of 120°. The detection range is between 0.8 and 100 km and could possibly increase to 200 km. More than 100 targets can be tracked at the same time. It was delivered to the British Army in 2024, under the designation TAIPAN . It can be carried by a C-130 or slung under a heavy lift helicopter such as a Chinook . Its air mobility allows it for use by light and rapid reaction forces such as airborne and marine units. The use of
2479-408: The ability to produce several active beams, allowing them to continue scanning the sky while at the same time focusing smaller beams on certain targets for tracking or guiding semi-active radar homing missiles. PESAs quickly became widespread on ships and large fixed emplacements in the 1960s, followed by airborne sensors as the electronics shrank. ELINT Signals intelligence ( SIGINT )
2546-453: The actual information is at 800 kHz and 1.2 MHz. Real-world transmitters and receivers usually are directional. In the figure to the left, assume that each display is connected to a spectrum analyzer connected to a directional antenna aimed in the indicated direction. Spread-spectrum communications is an electronic counter-countermeasures (ECCM) technique to defeat looking for particular frequencies. Spectrum analysis can be used in
2613-575: The antenna. The first module, a linear array, was completed in 1960. It formed the basis of the AN/FPS-85 . Starting in the 1960s, new solid-state devices capable of delaying the transmitter signal in a controlled way were introduced. That led to the first practical large-scale passive electronically scanned array, or simply phased array radar. PESAs took a signal from a single source, split it into hundreds of paths, selectively delayed some of them, and sent them to individual antennas. The radio signals from
2680-627: The army in France in 1915. By May 1915, the Admiralty was able to track German submarines crossing the North Sea. Some of these stations also acted as 'Y' stations to collect German messages, but a new section was created within Room 40 to plot the positions of ships from the directional reports. Room 40 played an important role in several naval engagements during the war, notably in detecting major German sorties into
2747-492: The broader organizational order of battle . EOB covers both COMINT and ELINT. The Defense Intelligence Agency maintains an EOB by location. The Joint Spectrum Center (JSC) of the Defense Information Systems Agency supplements this location database with five more technical databases: For example, several voice transmitters might be identified as the command net (i.e., top commander and direct reports) in
ARTHUR - Misplaced Pages Continue
2814-412: The commander's orders and the situation, this information may be used to alert any troops in the impact area and engage the hostile batteries with counter-battery fire. If the users have digital communications networks these messages may be sent automatically. The ARTHUR can determine whether the artillery piece is of artillery -type, rocket -type or mortar -type based upon the curve of the trajectory,
2881-446: The decision to target is made, the various interception points need to cooperate, since resources are limited. Knowing what interception equipment to use becomes easier when a target country buys its radars and radios from known manufacturers, or is given them as military aid . National intelligence services keep libraries of devices manufactured by their own country and others, and then use a variety of techniques to learn what equipment
2948-469: The different signals to different transmitters in the battlefield. The complexity of the separation process depends on the complexity of the transmission methods (e.g., hopping or time-division multiple access (TDMA)). By gathering and clustering data from each sensor, the measurements of the direction of signals can be optimized and get much more accurate than the basic measurements of a standard direction finding sensor. By calculating larger samples of
3015-500: The fronts, that we won the war!" Supreme Allied Commander, Dwight D. Eisenhower , at the end of the war, described Ultra as having been "decisive" to Allied victory. Official historian of British Intelligence in World War II Sir Harry Hinsley argued that Ultra shortened the war "by not less than two years and probably by four years"; and that, in the absence of Ultra, it is uncertain how the war would have ended. At
3082-420: The ground if it had to carry antennas and receivers for every possible frequency and signal type to deal with such countermeasures. Second, locating the transmitter's position is usually part of SIGINT. Triangulation and more sophisticated radio location techniques, such as time of arrival methods, require multiple receiving points at different locations. These receivers send location-relevant information to
3149-493: The importance of interception and decryption firmly established by the wartime experience, countries established permanent agencies dedicated to this task in the interwar period. In 1919, the British Cabinet's Secret Service Committee, chaired by Lord Curzon , recommended that a peace-time codebreaking agency should be created. The Government Code and Cypher School (GC&CS) was the first peace-time codebreaking agency, with
3216-448: The information being transmitted. Received energy on a particular frequency may start a recorder, and alert a human to listen to the signals if they are intelligible (i.e., COMINT). If the frequency is not known, the operators may look for power on primary or sideband frequencies using a spectrum analyzer . Information from the spectrum analyzer is then used to tune receivers to signals of interest. For example, in this simplified spectrum,
3283-530: The late 1990s, PSTS, constantly sends out information that helps the interceptors properly aim their antennas and tune their receivers. Larger intercept aircraft, such as the EP-3 or RC-135 , have the on-board capability to do some target analysis and planning, but others, such as the RC-12 GUARDRAIL , are completely under ground direction. GUARDRAIL aircraft are fairly small and usually work in units of three to cover
3350-423: The location of the guns, mortars or rocket launchers that fired and their target area. Fire direction is used to adjust the fire of own artillery onto target coordinates. When locating enemy artillery, the radar tracks the up-going trajectory of shells, calculates their points of origin and impact and, with other information, displays it to the radar operator(s). Depending on national tactics, techniques, procedures,
3417-430: The main threat. The usual measures against the first are using a radar horizon to screen from ground-based detection, minimising transmission time, deploying radars singly and moving frequently. Swedish ARTHUR units usually operate in groups of three that guard the immediate surroundings. Passive electronically scanned array A passive electronically scanned array ( PESA ), also known as passive phased array ,
SECTION 50
#17330859312713484-564: The message need not be known to infer the movement. There is an art as well as science of traffic analysis. Expert analysts develop a sense for what is real and what is deceptive. Harry Kidder , for example, was one of the star cryptanalysts of World War II, a star hidden behind the secret curtain of SIGINT. Generating an electronic order of battle (EOB) requires identifying SIGINT emitters in an area of interest, determining their geographic location or range of mobility, characterizing their signals, and, where possible, determining their role in
3551-410: The message, or even MASINT techniques for "fingerprinting" transmitters or operators. Message content other than the sender and receiver is not necessary to do traffic analysis, although more information can be helpful. For example, if a certain type of radio is known to be used only by tank units, even if the position is not precisely determined by direction finding, it may be assumed that a tank unit
3618-576: The messages). Traffic analysis —the study of who is signaling to whom and in what quantity—is also used to integrate information, and it may complement cryptanalysis. Electronic interceptions appeared as early as 1900, during the Boer War of 1899–1902. The British Royal Navy had installed wireless sets produced by Marconi on board their ships in the late 1890s, and the British Army used some limited wireless signalling. The Boers captured some wireless sets and used them to make vital transmissions. Since
3685-616: The mobilization of the fleet, for the first time in history. Over the course of the First World War , a new method of signals intelligence reached maturity. Russia’s failure to properly protect its communications fatally compromised the Russian Army ’s advance early in World War I and led to their disastrous defeat by the Germans under Ludendorff and Hindenburg at the Battle of Tannenberg . In 1918, French intercept personnel captured
3752-600: The munition's speed, and its range. When in fire direction mode the radar calculates the expected impact location of the friendly fire. From this corrections are calculated and reported to hit the target coordinates. Sweden also uses the radar for 'fall of shot' calibration. Radars are easy to detect and locate if the enemy has the necessary ELINT / ESM capability. The consequences of this detection are likely to be attack by artillery fire or aircraft (including anti-radiation missiles ) or ECM . In other circumstances ground attack with direct fire or short range indirect fire are
3819-461: The other side will be using radios that must be portable and not have huge antennas. Even if a signal is human communications (e.g., a radio), the intelligence collection specialists have to know it exists. If the targeting function described above learns that a country has a radar that operates in a certain frequency range, the first step is to use a sensitive receiver, with one or more antennas that listen in every direction, to find an area where such
3886-410: The resulting output to a display of some sort . The transmitter elements were typically klystron tubes or magnetrons , which are suitable for amplifying or generating a narrow range of frequencies to high power levels. To scan a portion of the sky, a non-PESA radar antenna must be physically moved to point in different directions. In contrast, the beam of a PESA radar can rapidly be changed to point in
3953-417: The sensor's output data in near real-time, together with historical information of signals, better results are achieved. Data fusion correlates data samples from different frequencies from the same sensor, "same" being confirmed by direction finding or radiofrequency MASINT. If an emitter is mobile, direction finding, other than discovering a repetitive pattern of movement, is of limited value in determining if
4020-452: The separate antennas overlapped in space, and the interference patterns between the individual signals was controlled to reinforce the signal in certain directions, and mute it in all others. The delays could be easily controlled electronically, allowing the beam to be steered very quickly without moving the antenna. A PESA can scan a volume of space much quicker than a traditional mechanical system. Thanks to progress in electronics, PESAs added
4087-503: The signal direction, which may be too slow when the signal is of short duration. One alternative is the Wullenweber array technique. In this method, several concentric rings of antenna elements simultaneously receive the signal, so that the best bearing will ideally be clearly on a single antenna or a small set. Wullenweber arrays for high-frequency signals are enormous, referred to as "elephant cages" by their users. A more advance approach
SECTION 60
#17330859312714154-451: The stadium. If, however, an anti-terrorist organization believed that a small group would be trying to coordinate their efforts using short-range unlicensed radios at the event, SIGINT targeting of radios of that type would be reasonable. Targeting would not know where in the stadium the radios might be located or the exact frequency they are using; those are the functions of subsequent steps such as signal detection and direction finding. Once
4221-453: The story of Operation SALAM , László Almásy 's mission across the desert behind Allied lines in 1942. Prior to the Normandy landings on D-Day in June 1944, the Allies knew the locations of all but two of Germany's fifty-eight Western Front divisions. Winston Churchill was reported to have told King George VI : "It is thanks to the secret weapon of General Menzies , put into use on all
4288-665: Was essential to defeating the U-boats in the Battle of the Atlantic , and to the British naval victories in the Battle of Cape Matapan and the Battle of North Cape . In 1941, Ultra exerted a powerful effect on the North African desert campaign against German forces under General Erwin Rommel . General Sir Claude Auchinleck wrote that were it not for Ultra, "Rommel would have certainly got through to Cairo". Ultra decrypts featured prominently in
4355-539: Was established in 1919 and achieved some success at the Washington Naval Conference in 1921, through cryptanalysis by Herbert Yardley . Secretary of War Henry L. Stimson closed the US Cipher Bureau in 1929 with the words "Gentlemen do not read each other's mail." The use of SIGINT had even greater implications during World War II . The combined effort of intercepts and cryptanalysis for the whole of
4422-494: Was safe for ships to operate. Whenever a change to the normal pattern was seen, it immediately signalled that some operation was about to take place, and a warning could be given. Detailed information about submarine movements was also available. The use of radio-receiving equipment to pinpoint the location of any single transmitter was also developed during the war. Captain H.J. Round , working for Marconi , began carrying out experiments with direction-finding radio equipment for
4489-662: Was so successful that by the end of the war, over 80 million words, comprising the totality of German wireless transmission over the course of the war, had been intercepted by the operators of the Y-stations and decrypted. However, its most astonishing success was in decrypting the Zimmermann Telegram , a telegram from the German Foreign Office sent via Washington to its ambassador Heinrich von Eckardt in Mexico. With
#270729