Misplaced Pages

Laser safety

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries . Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.

#754245

107-846: Moderate and high-power lasers are potentially hazardous because they can burn the retina , or even the skin. To control the risk of injury, various specifications, for example 21 Code of Federal Regulations (CFR) Part 1040 in the US and IEC 60825 internationally, define "classes" of laser depending on their power and wavelength. These regulations impose upon manufacturers required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles when operating lasers. Consensus standards, such as American National Standards Institute (ANSI) Z136, provide users with control measures for laser hazards, as well as various tables helpful in calculating maximum permissible exposure (MPE) limits and accessible exposures limits (AELs). Thermal effects are

214-459: A Class 1M laser cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. If the beam is refocused, the hazard of Class 1M lasers may be increased and the product class may be changed. A laser can be classified as Class 1M if the power that can pass through the pupil of the naked eye is less than the AEL for Class 1, but the power that can be collected into

321-465: A central band known as the visual streak. Around the fovea extends the central retina for about 6 mm and then the peripheral retina. The farthest edge of the retina is defined by the ora serrata . The distance from one ora to the other (or macula), the most sensitive area along the horizontal meridian , is about 32 mm. In section, the retina is no more than 0.5 mm thick. It has three layers of nerve cells and two of synapses , including

428-579: A considered view that the bird retina depends for nutrition and oxygen supply on a specialized organ, called the "pecten" or pecten oculi , located on the blind spot or optic disk. This organ is extremely rich in blood vessels and is thought to supply nutrition and oxygen to the bird retina by diffusion through the vitreous body. The pecten is highly rich in alkaline phosphatase activity and polarized cells in its bridge portion – both befitting its secretory role. Pecten cells are packed with dark melanin granules, which have been theorized to keep this organ warm with

535-460: A critical moment in aircraft operation, the aircraft may be endangered. In addition, some 18% to 35% of the population possess the autosomal dominant genetic trait, photic sneeze , that causes the affected individual to experience an involuntary sneezing fit when exposed to a sudden flash of light. The maximum permissible exposure (MPE) is the highest power or energy density (in W/cm or J/cm) of

642-573: A database of more than 400 reported incidents occurring between 1990 and 2004 in which pilots have been startled, distracted, temporarily blinded, or disoriented by laser exposure. This information led to an inquiry in the US Congress . Exposure to hand-held laser light under such circumstances may seem trivial given the brevity of exposure, the large distances involved and beam spread of up to several metres. However, laser exposure may create dangerous conditions such as flash blindness . If this occurs during

749-571: A direct laser beam hit. In the US , guidance for the use of protective eyewear, and other elements of safe laser use, is given in the ANSI Z136 series of standards. These consensus standards are intended for laser users, and full copies can be purchased directly from ANSI or the official Secretariat to the Accredited Standards Committee (ASC) Z136 and Publisher of this series of ANSI standards,

856-405: A high-power laser with a very large collimated beam or very highly divergent beam may be classified as Class 1 if the power that passes through the apertures defined in the standard is less than the AEL for Class 1; however, an unsafe power level may be collected by a magnifying optic with larger aperture. Often, devices such as optical drives will be considered class 1 if they fully contain

963-701: A large diameter or large divergence, for which the amount of light passing through the pupil cannot exceed the limits for class 2. LASER RADIATION AVOID DIRECT EYE EXPOSURE CLASS 3R LASER PRODUCT A Class 3R laser is considered safe if handled carefully, with restricted beam viewing. With a class 3R laser, the MPE can be exceeded, but with a low risk of injury. Visible continuous lasers in Class ;3R are limited to 5 mW. For other wavelengths and for pulsed lasers, other limits apply. LASER RADIATION AVOID EXPOSURE TO BEAM CLASS 3B LASER PRODUCT A Class 3B laser

1070-404: A laser beam. Eyewear must be selected for the specific type of laser, to block or attenuate in the appropriate wavelength range. For example, eyewear absorbing 532 nm typically has an orange appearance (although one should never rely solely on the lens color when selecting laser eye protection), transmitting wavelengths larger than 550 nm. Such eyewear would be useless as protection against

1177-408: A laser emitting at 800 nm. Furthermore, some lasers emit more than one wavelength of light, and this may be a particular problem with some less expensive frequency-doubled lasers, such as 532 nm "green laser pointers" which are commonly pumped by 808 nm infrared laser diodes, and also generate the fundamental 1064 nm laser beam which is used to produce the final 532 nm output. If

SECTION 10

#1732869596755

1284-462: A laser with the naked eye or with the aid of typical magnifying optics (e.g. telescope or microscope ). To verify compliance, the standard specifies the aperture and distance corresponding to the naked eye, a typical telescope viewing a collimated beam, and a typical microscope viewing a divergent beam. Certain lasers classified as Class 1 may still pose a hazard when viewed with a telescope or microscope of sufficiently large aperture. For example,

1391-418: A light source that is considered safe, i.e. that has a negligible probability for creating damage . It is usually about 10% of the dose that has a 50% chance of creating damage under worst-case conditions. The MPE is measured at the cornea of the human eye or at the skin, for a given wavelength and exposure time. A calculation of the MPE for ocular exposure takes into account the various ways light can act upon

1498-509: A linear model, this response profile is well described by a difference of Gaussians and is the basis for edge detection algorithms. Beyond this simple difference, ganglion cells are also differentiated by chromatic sensitivity and the type of spatial summation. Cells showing linear spatial summation are termed X cells (also called parvocellular, P, or midget ganglion cells), and those showing non-linear summation are Y cells (also called magnocellular, M, or parasol retinal ganglion cells), although

1605-580: A low output power (in which case eye damage is impossible even after hours of exposure), or due to an enclosure preventing user access to the laser beam during normal operation, such as in CD players or laser printers . The blink reflex of the human eye ( aversion response ) will prevent eye damage, unless the person deliberately stares into the beam for an extended period. Output power may be up to 1 mW. This class includes only lasers that emit visible light . Some laser pointers are in this category. A region in

1712-403: A more complex structure such as the inverted retina can generally come about as a consequence of two alternate processes - an advantageous "good" compromise between competing functional limitations, or as a historical maladaptive relic of the convoluted path of organ evolution and transformation. Vision is an important adaptation in higher vertebrates. A third view of the "inverted" vertebrate eye

1819-461: A result, the useful lifetime of photoreceptors in invertebrates is much shorter than in vertebrates. Having easily replaced stalk eyes (some lobsters) or retinae (some spiders, such as Deinopis ) rarely occurs. The cephalopod retina does not originate as an outgrowth of the brain, as the vertebrate one does. This difference suggests that vertebrate and cephalopod eyes are not homologous , but have evolved separately. From an evolutionary perspective,

1926-451: A safety dongle or an emission delay, but have an emergency stop button and/or a remote switch. Lasers have been classified by wavelength and power into four classes and a few subclasses since the early 1970s. The classifications categorize lasers according to their ability to produce damage in exposed people, from class 1 (no hazard during normal use) to class 4 (severe hazard for eyes and skin). There are two classification systems,

2033-446: A second or more, depending on the strength of the laser. A diffuse reflection is generally not hazardous, but specular reflections can be just as dangerous as direct exposures. Protective eyewear is recommended when direct beam viewing of Class IIIb lasers may occur. Lasers at the high power end of this class may also present a fire hazard and can lightly burn skin. Lasers in this class have output powers of more than 500 mW in

2140-483: A specified wavelength range and exposure time that passes through a specified aperture stop at a specified distance. For infrared wavelengths above 4 μm, it is specified as a maximum power density (in W/m). It is the responsibility of the manufacturer to provide the correct classification of a laser, and to equip the laser with appropriate warning labels and safety measures as prescribed by the regulations. Safety measures used with

2247-528: Is a lack of one or more of the cone subtypes that causes individuals to have deficiencies in colour vision or various kinds of colour blindness . These individuals are not blind to objects of a particular colour, but are unable to distinguish between colours that can be distinguished by people with normal vision. Humans have this trichromatic vision , while most other mammals lack cones with red sensitive pigment and therefore have poorer dichromatic colour vision. However, some animals have four spectral subtypes, e.g.

SECTION 20

#1732869596755

2354-417: Is also available. Changes in retinal blood circulation are seen with aging and exposure to air pollution, and may indicate cardiovascular diseases such as hypertension and atherosclerosis. Determining the equivalent width of arterioles and venules near the optic disc is also a widely used technique to identify cardiovascular risks. The retina translates an optical image into neural impulses starting with

2461-537: Is called mesopic vision . At mesopic light levels, both the rods and cones are actively contributing pattern information. What contribution the rod information makes to pattern vision under these circumstances is unclear. The response of cones to various wavelengths of light is called their spectral sensitivity. In normal human vision, the spectral sensitivity of a cone falls into one of three subtypes, often called blue, green, and red, but more accurately known as short, medium, and long wavelength-sensitive cone subtypes. It

2568-404: Is hazardous if the eye is exposed directly, but diffuse reflections such as those from paper or other matte surfaces are not harmful. The AEL for continuous lasers in the wavelength range from 315 nm to far infrared is 0.5 W. For pulsed lasers between 400 and 700 nm, the limit is 30 mJ. Other limits apply to other wavelengths and to ultrashort pulsed lasers. Protective eyewear

2675-464: Is hyperpolarised. The amount of neurotransmitter released is reduced in bright light and increases as light levels fall. The actual photopigment is bleached away in bright light and only replaced as a chemical process, so in a transition from bright light to darkness the eye can take up to thirty minutes to reach full sensitivity. When thus excited by light, the photoceptor sends a proportional response synaptically to bipolar cells which in turn signal

2782-403: Is most enhanced. The choroid supplies about 75% of these nutrients to the retina and the retinal vasculature only 25%. When light strikes 11-cis-retinal (in the disks in the rods and cones), 11-cis-retinal changes to all-trans-retinal which then triggers changes in the opsins. Now, the outer segments do not regenerate the retinal back into the cis- form once it has been changed by light. Instead

2889-450: Is needed. Eyewear is rated for optical density (OD), which is the base-10 logarithm of the attenuation factor by which the optical filter reduces beam power. For example, eyewear with OD 3 will reduce the beam power in the specified wavelength range by a factor of 1000. In addition to an optical density sufficient to reduce beam power to below the maximum permissible exposure (see above ), laser eyewear used where direct beam exposure

2996-438: Is not direct. Since about 150 million receptors and only 1 million optic nerve fibres exist, convergence and thus mixing of signals must occur. Moreover, the horizontal action of the horizontal and amacrine cells can allow one area of the retina to control another (e.g. one stimulus inhibiting another). This inhibition is key to lessening the sum of messages sent to the higher regions of the brain. In some lower vertebrates (e.g.

3103-423: Is partly transparent, and the accompanying glial cells have been shown to act as fibre-optic channels to transport photons directly to the photoreceptors, light scattering does occur. Some vertebrates, including humans, have an area of the central retina adapted for high-acuity vision. This area, termed the fovea centralis , is avascular (does not have blood vessels), and has minimal neural tissue in front of

3210-506: Is possible should be able to withstand a direct hit from the laser beam without breaking. The protective specifications (wavelengths and optical densities) are usually printed on the goggles, generally near the top of the unit. In the European Community, manufacturers are required by European standard EN 207 to specify the maximum power rating rather than the optical density. Always wear safety goggles. Interlocks are circuits that stop

3317-407: Is relevant for laser beams that have a cross-section smaller than 0.39 cm. The IEC-60825-1 and ANSI Z136.1 standards include methods of calculating MPEs. In various jurisdictions, standards bodies, legislation, and government regulations define classes of laser according to the risks associated with them, and define required safety measures for people who may be exposed to those lasers. In

Laser safety - Misplaced Pages Continue

3424-475: Is supported by an outer layer of pigmented epithelial cells. The primary light-sensing cells in the retina are the photoreceptor cells , which are of two types: rods and cones . Rods function mainly in dim light and provide monochromatic vision. Cones function in well-lit conditions and are responsible for the perception of colour through the use of a range of opsins , as well as high-acuity vision used for tasks such as reading. A third type of light-sensing cell,

3531-525: Is that it combines two benefits - the maintenance of the photoreceptors mentioned above, and the reduction in light intensity necessary to avoid blinding the photoreceptors, which are based on the extremely sensitive eyes of the ancestors of modern hagfish (fish that live in very deep, dark water). A recent study on the evolutionary purpose for the inverted retina structure from the APS (American Physical Society) says that "The directional of glial cells helps increase

3638-418: Is the highest and most dangerous class of laser, including all lasers that exceed the Class 3B AEL. By definition, a class 4 laser can burn the skin, or cause devastating and permanent eye damage as a result of direct, diffuse or indirect beam viewing. These lasers may ignite combustible materials, and thus may represent a fire risk. These hazards may also apply to indirect or non-specular reflections of

3745-514: Is the maximum allowed class. However, because enforcement is often not very strict, laser pointers of class 2 and above are often available for sale even in countries where they are not allowed. Van Norren et al. (1998) could not find a single example in the medical literature of a <1 mW class III laser causing eyesight damage. Mainster et al. (2003) provide one case, an 11-year-old child who temporarily damaged her eyesight by holding an approximately 5 mW red laser pointer close to

3852-432: Is triggered only by visible light. For example, some people exposed to high power Nd:YAG lasers emitting invisible 1064 nm radiation may not feel pain or notice immediate damage to their eyesight. A pop or click noise emanating from the eyeball may be the only indication that retinal damage has occurred, i.e. the retina was heated to over 100 °C (212 °F) resulting in localized explosive boiling accompanied by

3959-426: Is typically required where direct viewing of a class 3B laser beam may occur. Class-3B lasers must be equipped with a key switch and a safety interlock. Class 3B lasers are used inside CD and DVD writers, although the writer unit itself is class 1 because the laser light cannot leave the unit. LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION CLASS 4 LASER PRODUCT Class 4

4066-558: The European Community (EC), eye protection requirements are specified in European standard EN 207 and the maximal laser light intensities in EN 60825 . In addition, European standard EN 208 specifies requirements for goggles for use during beam alignment. These transmit a portion of the laser light, permitting the operator to see where the beam is, and do not provide complete protection against

4173-697: The Laser Institute of America . The standards are as follows: Through 21 CFR 1040, the US Food and Drug Administration (FDA) regulates laser products entering commerce and requires all class IIIb and class IV lasers offered in commerce in the US to have five standard safety features: a key switch , a safety interlock dongle, a power indicator, an aperture shutter, and an emission delay (normally two to three seconds). OEM lasers, designed to be parts of other components (such as DVD burners ), are exempt from this requirement. Some non-portable lasers may not have

4280-442: The lens of an eye, can cause laser radiation to be concentrated into an extremely small spot on the retina. A transient increase of only +10°C (+18°F) can destroy retinal photoreceptor cells . If the laser is sufficiently powerful, permanent damage can occur within a fraction of a second, which is faster than the blink of an eye. Sufficiently powerful lasers in the visible to near infrared range (400-1400  nm ) will penetrate

4387-408: The ophthalmic artery bifurcates and supplies the retina via two distinct vascular networks: the choroidal network, which supplies the choroid and the outer retina, and the retinal network, which supplies the retina's inner layer. Although the inverted retina of vertebrates appears counter-intuitive, it is necessary for the proper functioning of the retina. The photoreceptor layer must be embedded in

Laser safety - Misplaced Pages Continue

4494-425: The outer plexiform layer and the inner plexiform layer . In the outer neuropil layer, the rods and cones connect to the vertically running bipolar cells , and the horizontally oriented horizontal cells connect to ganglion cells. The central retina predominantly contains cones, while the peripheral retina predominantly contains rods. In total, the retina has about seven million cones and a hundred million rods. At

4601-463: The photosensitive ganglion cell , is important for entrainment of circadian rhythms and reflexive responses such as the pupillary light reflex . Light striking the retina initiates a cascade of chemical and electrical events that ultimately trigger nerve impulses that are sent to various visual centres of the brain through the fibres of the optic nerve . Neural signals from the rods and cones undergo processing by other neurons, whose output takes

4708-412: The photosensitive ganglion cells ; and transmission along the optic nerve. At each synaptic stage, horizontal and amacrine cells also are laterally connected. The optic nerve is a central tract of many axons of ganglion cells connecting primarily to the lateral geniculate body , a visual relay station in the diencephalon (the rear of the forebrain). It also projects to the superior colliculus ,

4815-787: The pigeon ), control of messages is "centrifugal" – that is, one layer can control another, or higher regions of the brain can drive the retinal nerve cells, but in primates, this does not occur. Using optical coherence tomography (OCT), 18 layers can be identified in the retina. The layers and anatomical correlation are: From innermost to outermost, the layers identifiable by OCT are as follows: on OCT anatomical boundaries? references (unclear if it can be observed on OCT) b) Müller cell nuclei (obliquely orientated fibres; not present in mid-peripheral or peripheral retina) Poorly distinguishable from RPE. Previously: "cone outer segment tips line" (COST) homogenous region of variable reflectivity Retinal development begins with

4922-412: The pigment epithelium just behind the photoreceptors, and causes burns in the retina. Ultraviolet light with wavelengths shorter than 400 nm tends to be absorbed by lens and 300 nm in the cornea , where it can produce injuries at relatively low powers due to photochemical damage. Infrared light mainly causes thermal damage to the retina at near-infrared wavelengths and to more frontal parts of

5029-403: The receptive field of the cell. The receptive fields of retinal ganglion cells comprise a central, approximately circular area, where light has one effect on the firing of the cell, and an annular surround, where light has the opposite effect. In ON cells, an increment in light intensity in the centre of the receptive field causes the firing rate to increase. In OFF cells, it makes it decrease. In

5136-425: The retinal ganglion cells . The photoreceptors are also cross-linked by horizontal cells and amacrine cells , which modify the synaptic signal before it reaches the ganglion cells, the neural signals being intermixed and combined. Of the retina's nerve cells, only the retinal ganglion cells and few amacrine cells create action potentials . In the retinal ganglion cells there are two types of response, depending on

5243-431: The suprachiasmatic nucleus , and the nucleus of the optic tract . It passes through the other layers, creating the optic disc in primates. Additional structures, not directly associated with vision, are found as outgrowths of the retina in some vertebrate groups. In birds , the pecten is a vascular structure of complex shape that projects from the retina into the vitreous humour ; it supplies oxygen and nutrients to

5350-481: The "old system" of classification were established in the United States through consensus standards (ANSI Z136.1) and federal and state regulations. The international classification described in consensus standards such as IEC 825 (later IEC 60825) was based on the same concepts, but presented with designations slightly different from the US classification. This classification system is only slightly altered from

5457-402: The "old system" used before 2002, and the "revised system" being phased in since 2002. The latter reflects the greater knowledge of lasers that has been accumulated since the original classification system was devised, and permits certain types of lasers to be recognized as having a lower hazard than was implied by their placement in the original classification system. The revised system is part of

SECTION 50

#1732869596755

5564-525: The IR radiation is allowed into the beam, which happens in some green laser pointers, it will in general not be blocked by regular red or orange-colored protective eyewear designed for pure green or already IR-filtered beam. Special YAG laser and dual-frequency eyewear are available for work with frequency-doubled YAG and other IR lasers which have a visible beam, but it is more expensive, and IR-pumped green laser products do not always specify whether such extra protection

5671-468: The MPE is higher than for collimated laser beams. In the MPE calculation, the worst-case scenario is assumed, in which the eye lens focuses the light into the smallest possible spot size on the retina for the particular wavelength and the pupil is fully open. Although the MPE is specified as power or energy per unit surface, it is based on the power or energy that can pass through a fully open pupil (0.39 cm) for visible and near-infrared wavelengths. This

5778-520: The N-T axis is coordinated by expression of the forkhead transcription factors FOXD1 and FOXG1 . Additional gradients are formed within the retina. This spatial distribution may aid in proper targeting of RGC axons that function to establish the retinotopic map. The retina is stratified into distinct layers, each containing specific cell types or cellular compartments that have metabolisms with different nutritional requirements. To satisfy these requirements,

5885-488: The absorption of stray light falling on the pecten. This is considered to enhance metabolic rate of the pecten, thereby exporting more nutritive molecules to meet the stringent energy requirements of the retina during long periods of exposure to light. The bifurcations and other physical characteristics of the inner retinal vascular network are known to vary among individuals, and these individual variances have been used for biometric identification and for early detection of

5992-449: The beam and may cause severe, permanent damage to eye or skin without being focussed by optics of eye or instrumentation. Diffuse reflections of the laser beam can be hazardous to skin or eye within the nominal hazard zone . (The nominal hazard zone is the area around a laser in which the applicable MPE is exceeded.) Many industrial, scientific, military and medical lasers are in this category. Many scientists involved with lasers agree on

6099-410: The beam of a more powerful, higher-class laser, such that no light escapes under normal use. LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT A Class 1M laser is safe for all conditions of use except when passed through magnifying optics such as microscopes and telescopes. Class 1M lasers produce large-diameter beams, or beams that are divergent. The MPE for

6206-456: The beam, even from apparently matte surfaces – meaning that great care must be taken to control the beam path. Class 4 lasers must be equipped with a key switch and a safety interlock. Most industrial, scientific, military, and medical lasers are in this category. Medical lasers can have divergent emissions and require awareness of nominal ocular hazard distance (NOHD) and nominal ocular hazard area (NOHA). The safety classes in

6313-454: The brain, the retina is isolated from the vascular system by the blood–brain barrier . The retina is the part of the body with the greatest continuous energy demand. The vertebrate retina is inverted in the sense that the light-sensing cells are in the back of the retina, so that light has to pass through layers of neurons and capillaries before it reaches the photosensitive sections of the rods and cones. The ganglion cells, whose axons form

6420-411: The centre of the macula is the foveal pit where the cones are narrow and long, and arranged in a hexagonal mosaic , the most dense, in contradistinction to the much fatter cones located more peripherally in the retina. At the foveal pit, the other retinal layers are displaced, before building up along the foveal slope until the rim of the fovea, or parafovea , is reached, which is the thickest portion of

6527-483: The clarity of human vision. But we also noticed something rather curious: the colours that best passed through the glial cells were green to red, which the eye needs most for daytime vision. The eye usually receives too much blue—and thus has fewer blue-sensitive cones. Further computer simulations showed that green and red are concentrated five to ten times more by the glial cells, and into their respective cones, than blue light. Instead, excess blue light gets scattered to

SECTION 60

#1732869596755

6634-422: The correspondence between X and Y cells (in the cat retina) and P and M cells (in the primate retina) is not as simple as it once seemed. In the transfer of visual signals to the brain, the visual pathway , the retina is vertically divided in two, a temporal (nearer to the temple) half and a nasal (nearer to the nose) half. The axons from the nasal half cross the brain at the optic chiasma to join with axons from

6741-419: The course of hours. Laser pulses shorter than about 1 μs can cause a rapid rise in temperature, resulting in explosive boiling of water. The shock wave from the explosion can subsequently cause damage relatively far away from the point of impact. Ultrashort pulses can also exhibit self-focusing in the transparent parts of the eye, leading to an increase of the damage potential compared to longer pulses with

6848-487: The emission time is less than 0.25 seconds or if the light is not spatially coherent. Intentional suppression of the blink reflex could lead to eye injury. Some laser pointers and measuring instruments are class 2. LASER RADIATION DO NOT STARE INTO BEAM OR VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 2M LASER PRODUCT A Class 2M laser is safe because of the blink reflex if not viewed through optical instruments. As with class 1M, this applies to laser beams with

6955-525: The establishment of the eye fields mediated by the SHH and SIX3 proteins, with subsequent development of the optic vesicles regulated by the PAX6 and LHX2 proteins. The role of Pax6 in eye development was elegantly demonstrated by Walter Gehring and colleagues, who showed that ectopic expression of Pax6 can lead to eye formation on Drosophila antennae, wings, and legs. The optic vesicle gives rise to three structures:

7062-403: The eye and staring into the beam for 10 seconds; she experienced scotoma (a blind spot) but fully recovered after three months. Luttrull & Hallisey (1999) describe a similar case, a 34-year-old male who stared into the beam of a class IIIa 5 mW red laser for 30 to 60 seconds, causing temporary central scotoma and visual field loss . His eyesight fully recovered within two days, at

7169-497: The eye at longer wavelengths. The table below summarizes the various medical conditions caused by lasers at different wavelengths, not including injuries due to pulsed lasers. The skin is usually much less sensitive to laser light than the eye, but excessive exposure to ultraviolet light from any source (laser or non-laser) can cause short- and long-term effects similar to sunburn , while visible and infrared wavelengths are mainly harmful due to thermal damage. FAA researchers compiled

7276-514: The eye by typical magnifying optics (as defined in the standard) is higher than the AEL for Class 1 and lower than the AEL for Class 3B. LASER RADIATION DO NOT STARE INTO BEAM CLASS 2 LASER PRODUCT A Class 2 laser is considered to be safe because the blink reflex (glare aversion response to bright lights) will limit the exposure to no more than 0.25 seconds. It only applies to visible-light lasers (400–700 nm). Class 2 lasers are limited to 1 mW continuous wave, or more if

7383-445: The eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception . The retina serves a function which is in many ways analogous to that of the film or image sensor in a camera . The neural retina consists of several layers of neurons interconnected by synapses and

7490-407: The eye, and may also aid in vision. Reptiles have a similar, but much simpler, structure. In adult humans, the entire retina is about 72% of a sphere about 22 mm in diameter. The entire retina contains about 7 million cones and 75 to 150 million rods. The optic disc, a part of the retina sometimes called "the blind spot" because it lacks photoreceptors, is located at the optic papilla , where

7597-426: The eye. For example, deep-ultraviolet light causes accumulating damage, even at very low powers. Infrared light with a wavelength longer than about 1400 nm is absorbed by the transparent parts of the eye before it reaches the retina, which means that the MPE for these wavelengths is higher than for visible light. In addition to the wavelength and exposure time, the MPE takes into account the spatial distribution of

7704-402: The eyeball and may cause heating of the retina, whereas exposure to laser radiation with wavelengths less than 400 nm or greater than 1400 nm are largely absorbed by the cornea and lens, leading to the development of cataracts or burn injuries. Infrared lasers are particularly hazardous, since the body's protective glare aversion response, also referred to as the " blink reflex ,"

7811-504: The following guidelines: The use of eye protection when operating lasers of classes 3B and 4 in a manner that may result in eye exposure above the MPE is required in the workplace by the US Occupational Safety and Health Administration . Protective eyewear in the form of appropriately filtering optics can protect the eyes from the reflected or scattered laser light with a hazardous beam power, as well as from direct exposure to

7918-496: The form of action potentials in retinal ganglion cells whose axons form the optic nerve. In vertebrate embryonic development , the retina and the optic nerve originate as outgrowths of the developing brain, specifically the embryonic diencephalon ; thus, the retina is considered part of the central nervous system (CNS) and is actually brain tissue. It is the only part of the CNS that can be visualized noninvasively . Like most of

8025-486: The immediate creation of a permanent blind spot . Lasers can cause damage in biological tissues, both to the eye and to the skin, due to several mechanisms. Thermal damage, or burn , occurs when tissues are heated to the point where denaturation of proteins occurs. Another mechanism is photochemical damage, where light triggers chemical reactions in tissue. Photochemical damage occurs mostly with short-wavelength (blue and ultraviolet ) light and can be accumulated over

8132-399: The laser beam if some condition is not met, such as if the laser casing or a room door is open. Class 3B and 4 lasers typically provide a connection for an external interlock circuit. Many lasers are considered class 1 only because the light is contained within an interlocked enclosure, like DVD drives or portable CD players. Some systems have electronics that automatically shut down

8239-414: The laser under other conditions. For example, some fiber-optic communication systems have circuits that automatically shut down transmission if a fiber is disconnected or broken. In many jurisdictions, organizations that operate lasers are required to appoint a laser-safety officer (LSO). The LSO is responsible for ensuring that safety regulations are followed by all other workers in the organization. In

8346-422: The light (from a laser or otherwise). Collimated laser beams of visible and near-infrared light are especially dangerous at relatively low powers because the lens focuses the light onto a tiny spot on the retina. Light sources with a smaller degree of spatial coherence than a well-collimated laser beam, such as high-power LEDs , lead to a distribution of the light over a larger area on the retina. For such sources,

8453-486: The limited capacity of the optic nerve. Compression is necessary because there are 100 times more photoreceptor cells than ganglion cells . This is done by " decorrelation ", which is carried out by the "centre–surround structures", which are implemented by the bipolar and ganglion cells. Eye lens Too Many Requests If you report this error to the Wikimedia System Administrators, please include

8560-451: The low-power end of Class II where the laser requires in excess of 1000 seconds of continuous viewing to produce a burn to the retina. Commercial laser scanners are in this subclass. Lasers in this class are mostly dangerous in combination with optical instruments which change the beam diameter or power density, though even without optical instrument enhancement, direct contact with the eye for over two minutes may cause serious damage to

8667-492: The more powerful lasers include key-controlled operation, warning lights to indicate laser light emission, a beam stop or attenuator , and an electrical contact that the user can connect to an emergency stop or interlock. Below, the main characteristics and requirements for the classification system as specified by the IEC 60825-1 standard are listed, along with typical required warning labels. Additionally, classes 2 and higher must have

8774-503: The neural retina, the retinal pigmented epithelium, and the optic stalk. The neural retina contains the retinal progenitor cells (RPCs) that give rise to the seven cell types of the retina. Differentiation begins with the retinal ganglion cells and concludes with production of the Muller glia. Although each cell type differentiates from the RPCs in a sequential order, there is considerable overlap in

8881-559: The old system. Class numbers were designated using Roman numerals (I–IV) in the US under the old system and Arabic numerals (1–4) in the EU. The revised system uses Arabic numerals (1–4) in all jurisdictions. The classification of a laser is based on the concept of accessible emission limits (AEL) that are defined for each laser class. This is usually a maximum power (in W) or energy (in J) that can be emitted in

8988-517: The onset of disease. The mapping of vascular bifurcations is one of the basic steps in biometric identification. Results of such analyses of retinal blood vessel structure can be evaluated against the ground truth data of vascular bifurcations of retinal fundus images that are obtained from the DRIVE dataset. In addition, the classes of vessels of the DRIVE dataset have also been identified, and an automated method for accurate extraction of these bifurcations

9095-445: The optic nerve are devoted to the fovea. The resolution limit of the fovea has been determined to be around 10,000 points. The information capacity is estimated at 500,000 bits per second (for more information on bits, see information theory ) without colour or around 600,000 bits per second including colour. When the retina sends neural impulses representing an image to the brain, it spatially encodes (compresses) those impulses to fit

9202-421: The optic nerve, are at the front of the retina; therefore, the optic nerve must cross through the retina en route to the brain. No photoreceptors are in this region, giving rise to the blind spot . In contrast, in the cephalopod retina, the photoreceptors are in front, with processing neurons and capillaries behind them. Because of this, cephalopods do not have a blind spot. Although the overlying neural tissue

9309-478: The optic-nerve fibres leave the eye. It appears as an oval white area of 3 mm . Temporal (in the direction of the temples) to this disc is the macula , at whose centre is the fovea , a pit that is responsible for sharp central vision, but is actually less sensitive to light because of its lack of rods. Human and non-human primates possess one fovea, as opposed to certain bird species, such as hawks, that are bifoviate, and dogs and cats, that possess no fovea, but

9416-407: The original system developed in the early 1970s. It is still used by US laser product safety regulations. The laser powers mentioned are typical values. Classification is also dependent on the wavelength and on whether the laser is pulsed or continuous. For laser classes 1 to 4, see the section on the revised system above. Inherently safe; no possibility of eye damage. This can be either because of

9523-747: The patterned excitation of the colour-sensitive pigments of its rods and cones, the retina's photoreceptor cells . The excitation is processed by the neural system and various parts of the brain working in parallel to form a representation of the external environment in the brain. The cones respond to bright light and mediate high-resolution colour vision during daylight illumination (also called photopic vision ). The rod responses are saturated at daylight levels and do not contribute to pattern vision. However, rods do respond to dim light and mediate lower-resolution, monochromatic vision under very low levels of illumination (called scotopic vision ). The illumination in most office settings falls between these two levels and

9630-514: The period from 1999 to 2016, increasing attention has been paid to the risks posed by so-called laser pointers and laser pens. Typically, the sale of laser pointers is restricted to either class 3A (<5 mW) or class 2 (<1 mW), depending on local regulations. For example, in the US, Canada and the UK, class 3A is the maximum permitted, unless a key actuated control or other safety features are provided. In Australia , class 2

9737-499: The photoreceptors, thereby minimizing light scattering. The cephalopods have a non-inverted retina, which is comparable in resolving power to the eyes of many vertebrates. Squid eyes do not have an analog of the vertebrate retinal pigment epithelium (RPE). Although their photoreceptors contain a protein, retinochrome, that recycles retinal and replicates one of the functions of the vertebrate RPE, cephalopod photoreceptors are likely not maintained as well as in vertebrates, and that as

9844-434: The predominant cause of laser radiation injury, but photo-chemical effects can also be of concern for specific wavelengths of laser radiation. Even moderately powered lasers can cause injury to the eye. High power lasers can also burn the skin. Some lasers are so powerful that even the diffuse reflection from a surface can be hazardous to the eye. The coherence and low divergence angle of laser light, aided by focusing from

9951-458: The resting state the cell is depolarised. The photon causes the retinal bound to the receptor protein to isomerise to trans-retinal . This causes the receptor to activate multiple G-proteins . This in turn causes the Ga-subunit of the protein to activate a phosphodiesterase (PDE6), which degrades cGMP, resulting in the closing of Na+ cyclic nucleotide-gated ion channels (CNGs). Thus the cell

10058-539: The retina. Output power does not exceed 5 mW. Beam power density may not exceed 2.5 mW/cm if the device is not labeled with a "caution" warning label, otherwise a "danger" warning label is required. Many laser sights for firearms and laser pointers commonly used for presentations are in this category. Lasers in this class may cause damage if the beam enters the eye directly. This generally applies to lasers powered from 5–500 mW. Lasers in this category can cause permanent eye damage with exposures of 1/100 of

10165-450: The retina. The macula has a yellow pigmentation, from screening pigments, and is known as the macula lutea. The area directly surrounding the fovea has the highest density of rods converging on single bipolar cells. Since its cones have a much lesser convergence of signals, the fovea allows for the sharpest vision the eye can attain. Though the rod and cones are a mosaic of sorts, transmission from receptors, to bipolars, to ganglion cells

10272-511: The retinal is pumped out to the surrounding RPE where it is regenerated and transported back into the outer segments of the photoreceptors. This recycling function of the RPE protects the photoreceptors against photo-oxidative damage and allows the photoreceptor cells to have decades-long useful lives. The bird retina is devoid of blood vessels, perhaps to give unobscured passage of light for forming images, thus giving better resolution. It is, therefore,

10379-490: The retinal pigment epithelium (RPE), which performs at least seven vital functions, one of the most obvious being to supply oxygen and other necessary nutrients needed for the photoreceptors to function. The energy requirements of the retina are even greater than that of the brain. This is due to the additional energy needed to continuously renew the photoreceptor outer segments, of which 10% are shed daily. Energy demands are greatest during dark adaptation when its sensitivity

10486-546: The revised IEC 60825 standard. From 2007, the revised system is also incorporated into the US-oriented ANSI Laser Safety Standard (ANSI Z136.1). Since 2007, labeling according to the revised system is accepted by the FDA on laser products imported into the US. The old and revised systems can be distinguished by the 1M, 2M and 3R classes used only in the revised system and the 2A and 3A classes used only in

10593-500: The rods and cones. Light is absorbed by the retinal pigment epithelium or the choroid (both of which are opaque). The white blood cells in the capillaries in front of the photoreceptors can be perceived as tiny bright moving dots when looking into blue light. This is known as the blue field entoptic phenomenon (or Scheerer's phenomenon). Between the ganglion-cell layer and the rods and cones are two layers of neuropils , where synaptic contacts are made. The neuropil layers are

10700-402: The same energy. Photoionization proved to be the main mechanism of radiation damage at the use of titanium-sapphire laser . The eye focuses visible and near-infrared light onto the retina. A laser beam can be focused to an intensity on the retina which may be up to 200,000 times higher than at the point where the laser beam enters the eye. Most of the light is absorbed by melanin pigments in

10807-418: The surrounding rods. This optimization is such that color vision during the day is enhanced, while night-time vision suffers very little". The vertebrate retina has 10 distinct layers. From closest to farthest from the vitreous body: These layers can be grouped into four main processing stages—photoreception; transmission to bipolar cells ; transmission to ganglion cells , which also contain photoreceptors,

10914-450: The temporal half of the other eye before passing into the lateral geniculate body . Although there are more than 130 million retinal receptors, there are only approximately 1.2 million fibres (axons) in the optic nerve. So, a large amount of pre-processing is performed within the retina. The fovea produces the most accurate information. Despite occupying about 0.01% of the visual field (less than 2° of visual angle ), about 10% of axons in

11021-461: The time of his eye exam. An intravenous fundus fluorescein angiogram , a technique used by ophthalmologists to visualise the retina of the eye in fine detail, identified subtle discoloration of the fovea . Retina The retina (from Latin rete  'net'; pl.   retinae or retinas ) is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs . The optics of

11128-430: The timing of when individual cell types differentiate. The cues that determine a RPC daughter cell fate are coded by multiple transcription factor families including the bHLH and homeodomain factors. In addition to guiding cell fate determination, cues exist in the retina to determine the dorsal-ventral (D-V) and nasal-temporal (N-T) axes. The D-V axis is established by a ventral to dorsal gradient of VAX2 , whereas

11235-406: The triangular warning label shown here, and other labels are required in specific cases indicating laser emission, laser apertures, skin hazards, and invisible wavelengths. For classes I to IV, see the section old system further below. CLASS 1 LASER PRODUCT A Class 1 laser is safe under all conditions of normal use. This means the maximum permissible exposure (MPE) cannot be exceeded when viewing

11342-476: The trout adds an ultraviolet subgroup to short, medium, and long subtypes that are similar to humans. Some fish are sensitive to the polarization of light as well. In the photoreceptors, exposure to light hyperpolarizes the membrane in a series of graded shifts. The outer cell segment contains a photopigment . Inside the cell the normal levels of cyclic guanosine monophosphate (cGMP) keep the Na+ channel open, and thus in

11449-436: The unique ribbon synapse . The optic nerve carries the ganglion-cell axons to the brain, and the blood vessels that supply the retina. The ganglion cells lie innermost in the eye while the photoreceptive cells lie beyond. Because of this counter-intuitive arrangement, light must first pass through and around the ganglion cells and through the thickness of the retina, (including its capillary vessels, not shown) before reaching

#754245