Misplaced Pages

AN/CPS-9

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#867132

123-979: The AN/CPS-9 radar , the first radar specifically designed for meteorological use, was produced in the United States around 1949 and unveiled by the Air Weather Service (now the Air Force Weather Agency) in 1954. The AN/CPS-9 was installed at military bases worldwide, as well as laboratories, such as the Air Force Cambridge Research Center, the Air Force Geophysics Laboratory (AFGL), the Phillips Laboratory (PL), and all weather training facilities and universities. Fifty-six CPS-9s were produced for all services combined, and less than 50 went into operational use in

246-632: A GPS clock for data logging . Upper air data are of crucial importance for weather forecasting. The most widely used technique is launches of radiosondes . Supplementing the radiosondes a network of aircraft collection is organized by the World Meteorological Organization . Remote sensing , as used in meteorology, is the concept of collecting data from remote weather events and subsequently producing weather information. The common types of remote sensing are Radar , Lidar , and satellites (or photogrammetry ). Each collects data about

369-466: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

492-403: A receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for military use by several countries in the period before and during World War II . A key development was the cavity magnetron in

615-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

738-606: A Problem in Mechanics and Physics that it should be possible to forecast weather from calculations based upon natural laws . It was not until later in the 20th century that advances in the understanding of atmospheric physics led to the foundation of modern numerical weather prediction . In 1922, Lewis Fry Richardson published "Weather Prediction By Numerical Process," after finding notes and derivations he worked on as an ambulance driver in World War I. He described how small terms in

861-498: A Roman geographer, formalized the climatic zone system. In 63–64 AD, Seneca wrote Naturales quaestiones . It was a compilation and synthesis of ancient Greek theories. However, theology was of foremost importance to Seneca, and he believed that phenomena such as lightning were tied to fate. The second book(chapter) of Pliny 's Natural History covers meteorology. He states that more than twenty ancient Greek authors studied meteorology. He did not make any personal contributions, and

984-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

1107-466: A farmer's potential harvest. In 1450, Leone Battista Alberti developed a swinging-plate anemometer , and was known as the first anemometer . In 1607, Galileo Galilei constructed a thermoscope . In 1611, Johannes Kepler wrote the first scientific treatise on snow crystals: "Strena Seu de Nive Sexangula (A New Year's Gift of Hexagonal Snow)." In 1643, Evangelista Torricelli invented the mercury barometer . In 1662, Sir Christopher Wren invented

1230-535: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

1353-485: A gale was expected. FitzRoy coined the term "weather forecast" and tried to separate scientific approaches from prophetic ones. Over the next 50 years, many countries established national meteorological services. The India Meteorological Department (1875) was established to follow tropical cyclone and monsoon . The Finnish Meteorological Central Office (1881) was formed from part of Magnetic Observatory of Helsinki University . Japan's Tokyo Meteorological Observatory,

SECTION 10

#1733085811868

1476-480: A great many modelling equations) that significant breakthroughs in weather forecasting were achieved. An important branch of weather forecasting is marine weather forecasting as it relates to maritime and coastal safety, in which weather effects also include atmospheric interactions with large bodies of water. Meteorological phenomena are observable weather events that are explained by the science of meteorology. Meteorological phenomena are described and quantified by

1599-621: A group of meteorologists in Norway led by Vilhelm Bjerknes developed the Norwegian cyclone model that explains the generation, intensification and ultimate decay (the life cycle) of mid-latitude cyclones , and introduced the idea of fronts , that is, sharply defined boundaries between air masses . The group included Carl-Gustaf Rossby (who was the first to explain the large scale atmospheric flow in terms of fluid dynamics ), Tor Bergeron (who first determined how rain forms) and Jacob Bjerknes . In

1722-473: A legitimate branch of physics. In the 18th century, the invention of the thermometer and barometer allowed for more accurate measurements of temperature and pressure, leading to a better understanding of atmospheric processes. This century also saw the birth of the first meteorological society, the Societas Meteorologica Palatina in 1780. In the 19th century, advances in technology such as

1845-492: A period up to a year. His system was based on dividing the year by the setting and the rising of the Pleiad, halves into solstices and equinoxes, and the continuity of the weather for those periods. He also divided months into the new moon, fourth day, eighth day and full moon, in likelihood of a change in the weather occurring. The day was divided into sunrise, mid-morning, noon, mid-afternoon and sunset, with corresponding divisions of

1968-729: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

2091-495: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

2214-698: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

2337-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

2460-950: A snapshot of a variety of weather conditions at one single location and are usually at a weather station , a ship or a weather buoy . The measurements taken at a weather station can include any number of atmospheric observables. Usually, temperature, pressure , wind measurements, and humidity are the variables that are measured by a thermometer, barometer, anemometer, and hygrometer, respectively. Professional stations may also include air quality sensors ( carbon monoxide , carbon dioxide , methane , ozone , dust , and smoke ), ceilometer (cloud ceiling), falling precipitation sensor, flood sensor , lightning sensor , microphone ( explosions , sonic booms , thunder ), pyranometer / pyrheliometer / spectroradiometer (IR/Vis/UV photodiodes ), rain gauge / snow gauge , scintillation counter ( background radiation , fallout , radon ), seismometer ( earthquakes and tremors), transmissometer (visibility), and

2583-662: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

SECTION 20

#1733085811868

2706-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

2829-855: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

2952-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

3075-598: Is also responsible for twilight in Opticae thesaurus ; he estimated that twilight begins when the sun is 19 degrees below the horizon , and also used a geometric determination based on this to estimate the maximum possible height of the Earth's atmosphere as 52,000 passim (about 49 miles, or 79 km). Adelard of Bath was one of the early translators of the classics. He also discussed meteorological topics in his Quaestiones naturales . He thought dense air produced propulsion in

3198-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

3321-560: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

3444-487: Is not mandatory to be hired by the media. Each science has its own unique sets of laboratory equipment. In the atmosphere, there are many things or qualities of the atmosphere that can be measured. Rain, which can be observed, or seen anywhere and anytime was one of the first atmospheric qualities measured historically. Also, two other accurately measured qualities are wind and humidity. Neither of these can be seen but can be felt. The devices to measure these three sprang up in

3567-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

3690-454: The 22° and 46° halos . The ancient Greeks were the first to make theories about the weather. Many natural philosophers studied the weather. However, as meteorological instruments did not exist, the inquiry was largely qualitative, and could only be judged by more general theoretical speculations. Herodotus states that Thales predicted the solar eclipse of 585 BC. He studied Babylonian equinox tables. According to Seneca, he gave

3813-413: The Earth's magnetic field lines. In 1494, Christopher Columbus experienced a tropical cyclone, which led to the first written European account of a hurricane. In 1686, Edmund Halley presented a systematic study of the trade winds and monsoons and identified solar heating as the cause of atmospheric motions. In 1735, an ideal explanation of global circulation through study of the trade winds

AN/CPS-9 - Misplaced Pages Continue

3936-628: The Kitab al-Nabat (Book of Plants), in which he deals with the application of meteorology to agriculture during the Arab Agricultural Revolution . He describes the meteorological character of the sky, the planets and constellations , the sun and moon , the lunar phases indicating seasons and rain, the anwa ( heavenly bodies of rain), and atmospheric phenomena such as winds, thunder, lightning, snow, floods, valleys, rivers, lakes. In 1021, Alhazen showed that atmospheric refraction

4059-623: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

4182-714: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

4305-551: The Smithsonian Institution began to establish an observation network across the United States under the leadership of Joseph Henry . Similar observation networks were established in Europe at this time. The Reverend William Clement Ley was key in understanding of cirrus clouds and early understandings of Jet Streams . Charles Kenneth Mackinnon Douglas , known as 'CKM' Douglas read Ley's papers after his death and carried on

4428-1262: The United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym , a common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

4551-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

4674-417: The heat capacity of gases varies inversely with atomic weight . In 1824, Sadi Carnot analyzed the efficiency of steam engines using caloric theory; he developed the notion of a reversible process and, in postulating that no such thing exists in nature, laid the foundation for the second law of thermodynamics . In 1716, Edmund Halley suggested that aurorae are caused by "magnetic effluvia" moving along

4797-632: The phlogiston theory . In 1777, Antoine Lavoisier discovered oxygen and developed an explanation for combustion. In 1783, in Lavoisier's essay "Reflexions sur le phlogistique," he deprecates the phlogiston theory and proposes a caloric theory . In 1804, John Leslie observed that a matte black surface radiates heat more effectively than a polished surface, suggesting the importance of black-body radiation . In 1808, John Dalton defended caloric theory in A New System of Chemistry and described how it combines with matter, especially gases; he proposed that

4920-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

5043-527: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

AN/CPS-9 - Misplaced Pages Continue

5166-404: The 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics, and more particularly in the latter half of the 20th century, the development of the computer (allowing for the automated solution of

5289-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

5412-568: The Air Force; APQ-13s had to be kept in operation at facilities that did not receive a CPS-9. The first operational CPS-9 was installed at Maxwell AFB, Alabama, on 20 June 1954; that radar remained operational for 30 years before finally being replaced on 14 July 1984 by a more modern radar, the AN/FPS-77 (Fuller 1990a). In 1966, the Air Weather Service still had 40 CPS-9s in operation. By 1974,

5535-516: The Aristotelian method. The work of Theophrastus remained a dominant influence in weather forecasting for nearly 2,000 years. Meteorology continued to be studied and developed over the centuries, but it was not until the Renaissance in the 14th to 17th centuries that significant advancements were made in the field. Scientists such as Galileo and Descartes introduced new methods and ideas, leading to

5658-516: The Great was the first to propose that each drop of falling rain had the form of a small sphere, and that this form meant that the rainbow was produced by light interacting with each raindrop. Roger Bacon was the first to calculate the angular size of the rainbow. He stated that a rainbow summit cannot appear higher than 42 degrees above the horizon. In the late 13th century and early 14th century, Kamāl al-Dīn al-Fārisī and Theodoric of Freiberg were

5781-524: The Modification of Clouds , in which he assigns cloud types Latin names. In 1806, Francis Beaufort introduced his system for classifying wind speeds . Near the end of the 19th century the first cloud atlases were published, including the International Cloud Atlas , which has remained in print ever since. The April 1960 launch of the first successful weather satellite , TIROS-1 , marked

5904-714: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

6027-472: The advancement in weather forecasting and satellite technology, meteorology has become an integral part of everyday life, and is used for many purposes such as aviation, agriculture, and disaster management. In 1441, King Sejong 's son, Prince Munjong of Korea, invented the first standardized rain gauge . These were sent throughout the Joseon dynasty of Korea as an official tool to assess land taxes based upon

6150-962: The air". Early attempts at predicting weather were often related to prophecy and divining , and were sometimes based on astrological ideas. Ancient religions believed meteorological phenomena to be under the control of the gods. The ability to predict rains and floods based on annual cycles was evidently used by humans at least from the time of agricultural settlement if not earlier. Early approaches to predicting weather were based on astrology and were practiced by priests. The Egyptians had rain-making rituals as early as 3500 BC. Ancient Indian Upanishads contain mentions of clouds and seasons . The Samaveda mentions sacrifices to be performed when certain phenomena were noticed. Varāhamihira 's classical work Brihatsamhita , written about 500 AD, provides evidence of weather observation. Cuneiform inscriptions on Babylonian tablets included associations between thunder and rain. The Chaldeans differentiated

6273-498: The appendix Les Meteores , he applied these principles to meteorology. He discussed terrestrial bodies and vapors which arise from them, proceeding to explain the formation of clouds from drops of water, and winds, clouds then dissolving into rain, hail and snow. He also discussed the effects of light on the rainbow. Descartes hypothesized that all bodies were composed of small particles of different shapes and interwovenness. All of his theories were based on this hypothesis. He explained

SECTION 50

#1733085811868

6396-533: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

6519-412: The atmosphere can be divided into distinct areas that depend on both time and spatial scales. At one extreme of this scale is climatology. In the timescales of hours to days, meteorology separates into micro-, meso-, and synoptic scale meteorology. Respectively, the geospatial size of each of these three scales relates directly with the appropriate timescale. Other subclassifications are used to describe

6642-456: The atmosphere from a remote location and, usually, stores the data where the instrument is located. Radar and Lidar are not passive because both use EM radiation to illuminate a specific portion of the atmosphere. Weather satellites along with more general-purpose Earth-observing satellites circling the earth at various altitudes have become an indispensable tool for studying a wide range of phenomena from forest fires to El Niño . The study of

6765-475: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

6888-666: The beginning of the age where weather information became available globally. In 1648, Blaise Pascal rediscovered that atmospheric pressure decreases with height, and deduced that there is a vacuum above the atmosphere. In 1738, Daniel Bernoulli published Hydrodynamics , initiating the Kinetic theory of gases and established the basic laws for the theory of gases. In 1761, Joseph Black discovered that ice absorbs heat without changing its temperature when melting. In 1772, Black's student Daniel Rutherford discovered nitrogen , which he called phlogisticated air , and together they developed

7011-460: The best known products of meteorologists for the public, weather presenters on radio and television are not necessarily professional meteorologists. They are most often reporters with little formal meteorological training, using unregulated titles such as weather specialist or weatherman . The American Meteorological Society and National Weather Association issue "Seals of Approval" to weather broadcasters who meet certain requirements but this

7134-401: The calculations led to unrealistic results. Though numerical analysis later found that this was due to numerical instability . Starting in the 1950s, numerical forecasts with computers became feasible. The first weather forecasts derived this way used barotropic (single-vertical-level) models, and could successfully predict the large-scale movement of midlatitude Rossby waves , that is,

7257-444: The chaotic nature of the atmosphere. Mathematical models used to predict the long term weather of the Earth ( climate models ), have been developed that have a resolution today that are as coarse as the older weather prediction models. These climate models are used to investigate long-term climate shifts, such as what effects might be caused by human emission of greenhouse gases . Meteorologists are scientists who study and work in

7380-413: The church and princes. This was supported by scientists like Johannes Muller , Leonard Digges , and Johannes Kepler . However, there were skeptics. In the 14th century, Nicole Oresme believed that weather forecasting was possible, but that the rules for it were unknown at the time. Astrological influence in meteorology persisted until the eighteenth century. Gerolamo Cardano 's De Subilitate (1550)

7503-613: The climate with public health. During the Age of Enlightenment meteorology tried to rationalise traditional weather lore, including astrological meteorology. But there were also attempts to establish a theoretical understanding of weather phenomena. Edmond Halley and George Hadley tried to explain trade winds . They reasoned that the rising mass of heated equator air is replaced by an inflow of cooler air from high latitudes. A flow of warm air at high altitude from equator to poles in turn established an early picture of circulation. Frustration with

SECTION 60

#1733085811868

7626-422: The clouds and winds extended up to 111 miles, but Posidonius thought that they reached up to five miles, after which the air is clear, liquid and luminous. He closely followed Aristotle's theories. By the end of the second century BC, the center of science shifted from Athens to Alexandria , home to the ancient Library of Alexandria . In the 2nd century AD, Ptolemy 's Almagest dealt with meteorology, because it

7749-491: The description of what is now known as the hydrologic cycle . His work would remain an authority on meteorology for nearly 2,000 years. The book De Mundo (composed before 250 BC or between 350 and 200 BC) noted: After Aristotle, progress in meteorology stalled for a long time. Theophrastus compiled a book on weather forecasting, called the Book of Signs , as well as On Winds . He gave hundreds of signs for weather phenomena for

7872-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

7995-471: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

8118-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

8241-606: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

8364-569: The early study of weather systems. Nineteenth century researchers in meteorology were drawn from military or medical backgrounds, rather than trained as dedicated scientists. In 1854, the United Kingdom government appointed Robert FitzRoy to the new office of Meteorological Statist to the Board of Trade with the task of gathering weather observations at sea. FitzRoy's office became the United Kingdom Meteorological Office in 1854,

8487-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

8610-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

8733-482: The existence of a circulation cell in the mid-latitudes, and the air within deflected by the Coriolis force resulting in the prevailing westerly winds. Late in the 19th century, the motion of air masses along isobars was understood to be the result of the large-scale interaction of the pressure gradient force and the deflecting force. By 1912, this deflecting force was named the Coriolis effect. Just after World War I,

8856-467: The explanation that the cause of the Nile 's annual floods was due to northerly winds hindering its descent by the sea. Anaximander and Anaximenes thought that thunder and lightning was caused by air smashing against the cloud, thus kindling the flame. Early meteorological theories generally considered that there was a fire-like substance in the atmosphere. Anaximander defined wind as a flowing of air, but this

8979-443: The field of meteorology. The American Meteorological Society publishes and continually updates an authoritative electronic Meteorology Glossary . Meteorologists work in government agencies , private consulting and research services, industrial enterprises, utilities, radio and television stations , and in education . In the United States, meteorologists held about 10,000 jobs in 2018. Although weather forecasts and warnings are

9102-461: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

9225-652: The first weather observing network, that consisted of meteorological stations in Florence , Cutigliano , Vallombrosa , Bologna , Parma , Milan , Innsbruck , Osnabrück , Paris and Warsaw . The collected data were sent to Florence at regular time intervals. In the 1660s Robert Hooke of the Royal Society of London sponsored networks of weather observers. Hippocrates ' treatise Airs, Waters, and Places had linked weather to disease. Thus early meteorologists attempted to correlate weather patterns with epidemic outbreaks, and

9348-400: The first time, a practical method for quickly gathering surface weather observations from a wide area. This data could be used to produce maps of the state of the atmosphere for a region near the Earth's surface and to study how these states evolved through time. To make frequent weather forecasts based on these data required a reliable network of observations, but it was not until 1849 that

9471-407: The first to give the correct explanations for the primary rainbow phenomenon. Theoderic went further and also explained the secondary rainbow. By the middle of the sixteenth century, meteorology had developed along two lines: theoretical science based on Meteorologica , and astrological weather forecasting. The pseudoscientific prediction by natural signs became popular and enjoyed protection of

9594-633: The first weather forecasts and temperature predictions. In the 20th and 21st centuries, with the advent of computer models and big data, meteorology has become increasingly dependent on numerical methods and computer simulations. This has greatly improved weather forecasting and climate predictions. Additionally, meteorology has expanded to include other areas such as air quality, atmospheric chemistry, and climatology. The advancement in observational, theoretical and computational technologies has enabled ever more accurate weather predictions and understanding of weather pattern and air pollution. In current time, with

9717-582: The forerunner of the Japan Meteorological Agency , began constructing surface weather maps in 1883. The United States Weather Bureau (1890) was established under the United States Department of Agriculture . The Australian Bureau of Meteorology (1906) was established by a Meteorology Act to unify existing state meteorological services. In 1904, Norwegian scientist Vilhelm Bjerknes first argued in his paper Weather Forecasting as

9840-516: The form of wind. He explained thunder by saying that it was due to ice colliding in clouds, and in Summer it melted. In the thirteenth century, Aristotelian theories reestablished dominance in meteorology. For the next four centuries, meteorological work by and large was mostly commentary . It has been estimated over 156 commentaries on the Meteorologica were written before 1650. Experimental evidence

9963-507: The interdisciplinary field of hydrometeorology . The interactions between Earth's atmosphere and its oceans are part of a coupled ocean-atmosphere system. Meteorology has application in many diverse fields such as the military, energy production, transport, agriculture, and construction. The word meteorology is from the Ancient Greek μετέωρος metéōros ( meteor ) and -λογία -logia ( -(o)logy ), meaning "the study of things high in

10086-413: The lack of discipline among weather observers, and the poor quality of the instruments, led the early modern nation states to organise large observation networks. Thus, by the end of the 18th century, meteorologists had access to large quantities of reliable weather data. In 1832, an electromagnetic telegraph was created by Baron Schilling . The arrival of the electrical telegraph in 1837 afforded, for

10209-500: The lakes and the Nile. Hippocrates inquired into the effect of weather on health. Eudoxus claimed that bad weather followed four-year periods, according to Pliny. These early observations would form the basis for Aristotle 's Meteorology , written in 350 BC. Aristotle is considered the founder of meteorology. One of the most impressive achievements described in the Meteorology is

10332-437: The late 16th century and first half of the 17th century a range of meteorological instruments were invented – the thermometer , barometer , hydrometer , as well as wind and rain gauges. In the 1650s natural philosophers started using these instruments to systematically record weather observations. Scientific academies established weather diaries and organised observational networks. In 1654, Ferdinando II de Medici established

10455-443: The mechanical, self-emptying, tipping bucket rain gauge. In 1714, Gabriel Fahrenheit created a reliable scale for measuring temperature with a mercury-type thermometer . In 1742, Anders Celsius , a Swedish astronomer, proposed the "centigrade" temperature scale, the predecessor of the current Celsius scale. In 1783, the first hair hygrometer was demonstrated by Horace-Bénédict de Saussure . In 1802–1803, Luke Howard wrote On

10578-448: The mid-15th century and were respectively the rain gauge , the anemometer, and the hygrometer. Many attempts had been made prior to the 15th century to construct adequate equipment to measure the many atmospheric variables. Many were faulty in some way or were simply not reliable. Even Aristotle noted this in some of his work as the difficulty to measure the air. Sets of surface measurements are important data to meteorologists. They give

10701-502: The night, with change being likely at one of these divisions. Applying the divisions and a principle of balance in the yearly weather, he came up with forecasts like that if a lot of rain falls in the winter, the spring is usually dry. Rules based on actions of animals are also present in his work, like that if a dog rolls on the ground, it is a sign of a storm. Shooting stars and the Moon were also considered significant. However, he made no attempt to explain these phenomena, referring only to

10824-500: The number was reduced to 11. None are in the operational inventory today. Texas A&M University was one of the universities to receive a CPS-9. The Condon Report on Unidentified Flying Objects refers to Texas A&M research using the AN/CPS-9. The CPS-9 became known for having good sensitivity. However, nearby rain would attenuate the signal from distant rain, making rainfall measurement less accurate. Hail may also have diminished

10947-494: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

11070-507: The opposite effect. Rene Descartes 's Discourse on the Method (1637) typifies the beginning of the scientific revolution in meteorology. His scientific method had four principles: to never accept anything unless one clearly knew it to be true; to divide every difficult problem into small problems to tackle; to proceed from the simple to the complex, always seeking relationships; to be as complete and thorough as possible with no prejudice. In

11193-520: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

11316-516: The pattern of atmospheric lows and highs . In 1959, the UK Meteorological Office received its first computer, a Ferranti Mercury . In the 1960s, the chaotic nature of the atmosphere was first observed and mathematically described by Edward Lorenz , founding the field of chaos theory . These advances have led to the current use of ensemble forecasting in most major forecasting centers, to take into account uncertainty arising from

11439-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

11562-415: The prognostic fluid dynamics equations that govern atmospheric flow could be neglected, and a numerical calculation scheme that could be devised to allow predictions. Richardson envisioned a large auditorium of thousands of people performing the calculations. However, the sheer number of calculations required was too large to complete without electronic computers, and the size of the grid and time steps used in

11685-415: The radar returns from storms, due to the way that X band radar energy reflects off hail. Despite this, researchers could identify storms strong enough to produce hail by looking for areas with those diminished returns. Radar Radar is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to

11808-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

11931-521: The rain as caused by clouds becoming too large for the air to hold, and that clouds became snow if the air was not warm enough to melt them, or hail if they met colder wind. Like his predecessors, Descartes's method was deductive, as meteorological instruments were not developed and extensively used yet. He introduced the Cartesian coordinate system to meteorology and stressed the importance of mathematics in natural science. His work established meteorology as

12054-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

12177-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

12300-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

12423-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

12546-442: The scientific revolution in meteorology. Speculation on the cause of the flooding of the Nile ended when Eratosthenes , according to Proclus , stated that it was known that man had gone to the sources of the Nile and observed the rains, although interest in its implications continued. During the era of Roman Greece and Europe, scientific interest in meteorology waned. In the 1st century BC, most natural philosophers claimed that

12669-440: The seasons. He believed that fire and water opposed each other in the atmosphere, and when fire gained the upper hand, the result was summer, and when water did, it was winter. Democritus also wrote about the flooding of the Nile. He said that during the summer solstice, snow in northern parts of the world melted. This would cause vapors to form clouds, which would cause storms when driven to the Nile by northerly winds, thus filling

12792-578: The second oldest national meteorological service in the world (the Central Institution for Meteorology and Geodynamics (ZAMG) in Austria was founded in 1851 and is the oldest weather service in the world). The first daily weather forecasts made by FitzRoy's Office were published in The Times newspaper in 1860. The following year a system was introduced of hoisting storm warning cones at principal ports when

12915-447: The signal is attenuated by the medium the beam crosses, and the beam disperses. The maximum range of conventional radar can be limited by a number of factors: Meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting . The study of meteorology dates back millennia , though significant progress in meteorology did not begin until

13038-416: The site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and

13161-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

13284-569: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

13407-427: The telegraph and photography led to the creation of weather observing networks and the ability to track storms. Additionally, scientists began to use mathematical models to make predictions about the weather. The 20th century saw the development of radar and satellite technology, which greatly improved the ability to observe and track weather systems. In addition, meteorologists and atmospheric scientists started to create

13530-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

13653-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

13776-467: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

13899-572: The value of his work is in preserving earlier speculation, much like Seneca's work. From 400 to 1100, scientific learning in Europe was preserved by the clergy. Isidore of Seville devoted a considerable attention to meteorology in Etymologiae , De ordine creaturum and De natura rerum . Bede the Venerable was the first Englishman to write about the weather in De Natura Rerum in 703. The work

14022-454: The variables of Earth's atmosphere: temperature, air pressure, water vapour , mass flow , and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. Meteorology, climatology , atmospheric physics , and atmospheric chemistry are sub-disciplines of the atmospheric sciences . Meteorology and hydrology compose

14145-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

14268-417: Was a summary of then extant classical sources. However, Aristotle's works were largely lost until the twelfth century, including Meteorologica . Isidore and Bede were scientifically minded, but they adhered to the letter of Scripture . Islamic civilization translated many ancient works into Arabic which were transmitted and translated in western Europe to Latin. In the 9th century, Al-Dinawari wrote

14391-468: Was considered a subset of astronomy. He gave several astrological weather predictions. He constructed a map of the world divided into climatic zones by their illumination, in which the length of the Summer solstice increased by half an hour per zone between the equator and the Arctic. Ptolemy wrote on the atmospheric refraction of light in the context of astronomical observations. In 25 AD, Pomponius Mela ,

14514-428: Was less important than appeal to the classics and authority in medieval thought. In the thirteenth century, Roger Bacon advocated experimentation and the mathematical approach. In his Opus majus , he followed Aristotle's theory on the atmosphere being composed of water, air, and fire, supplemented by optics and geometric proofs. He noted that Ptolemy's climatic zones had to be adjusted for topography . St. Albert

14637-406: Was not generally accepted for centuries. A theory to explain summer hail was first proposed by Anaxagoras . He observed that air temperature decreased with increasing height and that clouds contain moisture. He also noted that heat caused objects to rise, and therefore the heat on a summer day would drive clouds to an altitude where the moisture would freeze. Empedocles theorized on the change of

14760-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

14883-459: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

15006-399: Was the first work to challenge fundamental aspects of Aristotelian theory. Cardano maintained that there were only three basic elements- earth, air, and water. He discounted fire because it needed material to spread and produced nothing. Cardano thought there were two kinds of air: free air and enclosed air. The former destroyed inanimate things and preserved animate things, while the latter had

15129-531: Was written by George Hadley . In 1743, when Benjamin Franklin was prevented from seeing a lunar eclipse by a hurricane , he decided that cyclones move in a contrary manner to the winds at their periphery. Understanding the kinematics of how exactly the rotation of the Earth affects airflow was partial at first. Gaspard-Gustave Coriolis published a paper in 1835 on the energy yield of machines with rotating parts, such as waterwheels. In 1856, William Ferrel proposed

#867132